

SYNTHESIS, CHARACTERIZATION & PHARMACOLOGICAL

ACTIVITIES OF BENZENE-(1/, 4/-di-IMINE)-SUBSTITUTED-4, 4-di-

PHENYLAMINE, BENZENE-(1/, 4/-di-IMINE)-SUBSTITUTED-4, 4-10

h-di-PHENOTHIAZINE DERIVATIVES

 K. M. Baste¹, M. N. Narule², K. M. Wasnik³, Y. A. Hatwar⁴, S. V. Garhate⁵ ¹Pravara Rural Engineering College, Loni.
²Vidya Vikas Art, Commerce and Science College, Samudrapur, Wardha, Maharashtra, INDIA.
³Department of Physics, R. S. Bidkar College, Higanghat. ⁴Mata Mahakali polytechnic College, Chandrapur. ⁵Hislop college, Nagpur. Corresponding author E-mail:-meghasham_n@rediffmail.com

ABSTRACT

A novel series of the benzene-(1/, 4 /-di-imine)-4, 4-di-hydroxy-di-phenyl (2a-i), benzene-(1/. 4/-di-imine)-substituted-4, 4- diphenylamine (3a-i) and benzene-(1/, 4/-di-imine)-substituted-10*H*-di- phenothiazine (4a-i) were prepared by the reaction of 1, 4-di-imine with different aromatic aldehydes in excellent yield. Elemental analysis, 1R, H¹NMR, C¹³NMR and mass spectral data established identification of the compounds (4a-i) was evaluated for their antimicrobial & antifungal activity.

INTRODUCTION

Schiff bases are typically formed by the condensation of a primary amine & an aldehyde the resultant functional group RHC=N-R is called imine & is particularly for binding metal ions via N- atom lone pair. Phenothazines are pharmaceutical active compounds & have diverse biological application their anti inflammatory and Tranquillizer properties are widely reported. Various phenothiazines have been reported as important antifungal¹, anti-tumor², bactericidal and anti-histamine properties³⁻⁵. Slight modification in phenothiazine nucleus causes marked difference in activity⁶ and therefore phenothiazine with varied substituents arc being synthesized and as a better medical agents

Phenothiazine derivatives possess diverse biological activities like antiparkinsonian ⁷⁻⁸, anticonvulsant ⁹, antihistaminic ¹⁰, antihelmatic ¹¹, antiviral ¹², antiparasitic ¹³ and CNS depressant ¹⁴.

RESULT AND DISCUSSION

In view of these observations, it was thought worthwhile to synthesize several compounds in which benzene-(1/, 4 / -di-imine)-4, 4-di-hydroxy-di-phenyl, benzene-(1/, 4/-di-imine)-substituted-4, 4- diphenylamine, benzene-(1/, 4/-di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine have been linked with new moiety

The reaction sequence leading to the formation of desired heterocyclic compounds are outlined in **Scheme-I**. The starting material benzene-(1/, 4 /-di-imine)-4, 4-di-hydroxy-di-phenyl (2a-i) was prepared by the reaction of substituted aldehydes with 1, 4-di-imine in presence of of benzene-(1/. 4/-di-imine)-substituted-4. ethanol. Synthesis 4diphenylamine (3a-i) by reaction of benzene-(1/, 4 /-di-imine)-4, 4-dihydroxy-di-phenyl (2a-i) with different aromatic aniline in presence of ethanol. The substituted benzene-(1/, 4/-di-imine)-substituted-10H-4, 4-10H-di-phenothiazine (4a-i) was prepared by reaction of benzene-(1/. 4/di-imine)-substituted-4, 4- diphenylamine (**3a-i**) with sulphur and lodine in the presence of DMF. The IR, H¹NMR, C¹³ NMR, Mass spectra of the benzene-(1/, 4/-di-imine)-substituted-10*H*-4, 4-10*H*-di-phenothiazine (4a-i) were recorded.

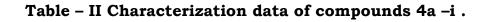
BIOLOGICAL STUDIES

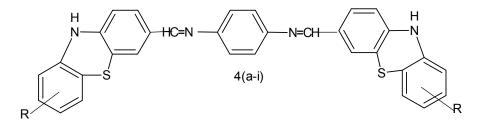
Comparative study of 1, 4 di-imine with different aromatic aldehydes & Benzene-(1/, 4/-di-imine)-substituted-4,4-10*H*-di-phenothiazine **(4a-i)** have been observed by using Norfloxacine and Griseofulvine as standards. The enhancement in biological activity of compound (1) as compared with the newly synthesized **(4a-i)** has been observed. The synthesized compounds were tested at 100g/ml concentration against

Escherichia *coli*, Staphylococcus *aureus*, Ps. *acruginosa*, P.*vulgaris*, A. *niger* and C. *albicans* for its antibacterial and antifungal screening as shown in **Table-I**.

	Antibacterial activity				Antifungal activity			
Compd	S .aureus	B. subst	B. substillis E. coli		ıns A. niger			
4 a	+ +	+ +	+	+ +	+ +			
4b	+	++ +	+ + +	+++	+++			
4c	-	+ +	+ + +	+ ++	+ +			
4d	+ ++	+ +	+ +	+ +	+ +			
4e	+	+ +	+	+++	++ +			
4f	++	+++	+ +	+++ -	++			
4 g	+ + +	+ +	-	++ +	+			
4 h	+ +	-	+	- +-	+ +			
4i	+ + +	+ +	+ + +	++ +	-			
SM GF	+ + +	+ + +	+ + + +	+ + + +	+ + +			

SM (Streptomycin) and GF (Griesofulvin). The inhibition diameter in


Mm: (-) <6, (+) 7-9, (++) 10-15,(+++) 16-22, (++++) 23-28.


EXPERIMENTAL

Melting points were taken in open capillary tubes and are uncorrected. IR spectra were run in KBr pellets on a Perkin-Elmer 157 spectrometer. H NMR spectra were recorded in CDCl₃ on a Bruker-Variah 300MHz FT NMR spectrometer using TMS as internal standard. Purity of the compounds was checked by TLC on silica gel G plates and the spots

were located by exposure to iodine vapours. The characterization data of the compounds is given in **Table –II**.

Comp.	R*	Mol. Formula	M. Pt	RF	%	Analysis Found (Calcd)%			
-			(°C)	Value Eluent*	Yield	С	Н	N	
4a	Н	$C_{32}H_{22}N_4S_2$	152°	0.90	70	79.1	5.5	7.1	
						(79.3)	(5.4)	(7.0)	
4b	2-OH	$C_{30}H_{24}N_4O_2S_2$	182°	0.71	65	67.5	4.7	6.0	
						(67.4)	(4.6)	(6.1)	
4c	3-OH	$C_{30}H_{24}N_4O_2S_2$	137°	0.75	67	67.5	4.7	6.0	
						(67.4)	(4.6)	(6.1)	
4d	4-OH	$C_{30}H_{24}N_4O_2S_2$	153°	0.82	62	67.5	4.7	6.0	
						(67.4)	(4.6)	(6.1)	
4e	$2-NO_2$	$C_{30}H_{24}N_6O_2S_2$	142°	0.77	57	64.4	4.1	11.5	
	a w o		1000	0 = 1	60	(64.1)	(4.0)	(11.4)	
4f	$3-NO_2$	$C_{30}H_{24}N_6O_2S_2$	136°	0.54	62	64.4	4.1	11.5	
	4 110		1000	0.06	50	(64.1)	(4.0)	(11.4)	
4g	$4-NO_2$	$C_{30}H_{24}N_6O_2S_2$	129°	0.86	52	64.4	4.1	11.5	
41	0.01		1400	0.75	C A	(64.1)	(4.0)	(11.4)	
4h	2-C1	$C_{30}H_{24}N_4S_2Cl$	143°	0.75	64	67.4	4.3	6.9	
4:	4 01		1 - 70	0.70	50	(67.3)	(4.2)	(6.2)	
4i	4-C1	$C_{30}H_{24}N_4S_2Cl$	157°	0.78	59	67.4	4.3	6.9	
						(67.3)	(4.2)	(6.2)	
*		TI C. Deverse seets	(6, 4) for						
	Eluciits for	TLC: Benzene – aceto	ne (o: 4) io	1° 4a-1 .					
*	Solvent for crystallization; aq. ethanol for 4a-i .								

General procedure for preparation of compounds

I. Synthesis of benzene-(1/, 4 /-di-imine)-4, 4-di-hydroxy-di-phenyl.

A mixture of 1, 4 di-imine (1 mole) and 4-hydroxy benzaldehyde (2 mole) in ethanol (25 ml) was refluxed for 6 hrs. A resulting solid material reported which was crystallized from DMF similarly other compounds were also prepared.

II. Synthesis of benzene-(1/. 4/-di-imine)-substituted-4, 4diphenylamine.

A mixture of Benzene-(1[/], 4[/] -di-imine)-4, 4-di-hydroxy-di-phenyl **1** (1 mole) & different anilines (2 mole) methanol was refluxed for 3 hrs and resulting solid was washed and crystallized from DMF similarly other compound were also prepared.

Ill. Synthesis of benzene- $(1^{/}, 4^{/}-di-imine)$ -substituted-10*H*-4, 4-10*H*-di-phenothiazine.

A mixture of Benzene-(1[/]. 4[/]-di-imine)-substituted-4, 4- diphenylamine (0.01 mole), sulphur (0.1 mole) and Iodine (0.5 g) was heated at 1200C in an oil bath for 2 hr. reaction mixture of Benzene-(1[/], 4[/]-di-imine)-substituted-10*H*-4, 4-di-phenothiazine was obtain, then crushed into fine powder & washed with ethanol and recrystallized from DMF.

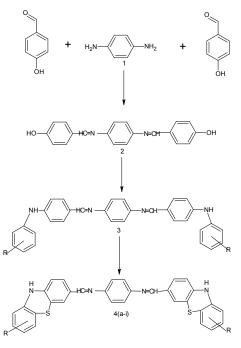
4a: (M. P. 152° yield 70 %.). IR(KBr): 3322 (N-H-phenothiazine), 2945 (C-H-Aromatic stretch), 1792.9, 1714 , 1650, 1524, 783 (C-S); H¹NMR (300MHz DMSO) δ 2.34, 4.22, 3.52; ¹³C NMR(300MHz, DMSO-*d*₆) 14.1, 13.2, 13.6, 22.0, 37.9, 38.2, 34.5, 39.4, 40.0, , 58.5, 76.8, 77.2, 77.6, 111.8, 159.1, 126.2, 137.3, 160.2, 162.1.

4b: (M. P. 182° yield 65%). IR(KBr): 3333 (N-H-phenothiazine), 2944 (C-H-Aromatic stretch), 1742.9, 1714, 1640, 1552, 1332, 745 (C-S); H¹NMR (300MHz DMSO) δ 2.46, 4.28, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 13.4, 27.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 134.3, 162.2, 165.5.

4c :(M. P.137° yield 67 %.). IR(KBr): 3444 (N-H-phenothiazine), 2957 (C-H-Aromatic stretch), 1752.9, 1754, 1650, 1555, 1336, 785 (C-S); H¹NMR (300MHz DMSO) δ 2.56, 4.58, 3.55;¹³C NMR(300MHz, DMSOd₆) 11.5, 13.5, 13.9, 27.0, 38.9, 34.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.3, 162.2, 164.6.

4d: (M. P. 153° yield 62 %.). IR(KBr): 3327 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1762.9, 1714 , 1650, 1362, 765 (C-S), 706 ; H¹NMR (300MHz DMSO) δ 2.66, 4.28, 3.54;¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 13.9, 27.0, 38.9, 34.2, 39.5, 39.7, 40.0, 46.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.3, 166.2, 165.3.

4e: (M. P. 142° yield 57 %.). IR(KBr): 3360 (N-H-phenothiazine), 2966 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1362, 785 (C-S) 766; H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.6, 13.9, 26.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.6, 162.2, 166.1.


4f: (M. P. 136° yield 62 %.). IR(KBr): 3326 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1332, 785,726; H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 12.9, 25.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.8, 119.1, 123.2, 137.3, 164.2, 165.3.

4g: (M. P. 129° yield 52 %.). IR(KBr):3552 (N-H-phenothiazine), 2959 (C-H-Aromatic stretch), 1792.9, 1714, 1650, 1332, 755 (C-S); H¹NMR (300MHz DMSO) δ 2.56, 4.25, 3.54; ¹³C NMR(300MHz, DMSO-*d*₆), 11.3, 13.4, 13.9, 27.0, 38.9, 35.2, 39.5, 39.7, 40.5, 40.3, 58.5, 75.8, 77.2, 77.6, 111.8, 115.1, 126.2, 137.3, 162.2, 165.0.

4h: (M. P. 143° yield 64 %.). IR(KBr): 3390 (N-H-phenothiazine), 2967 (C-H-Aromatic stretch), 1792.9, 1714, 1670, 1379, 775 (C-S). H¹NMR (300MHz DMSO) δ 2.56, 4.28, 3.54,¹³CNMR(300MHz,DMSOd₆), 11.3, 13.4, 13.9, 27.0, 38.9, 39.2, 39.5, 39.7, 40.0, 40.3, 57.5, 6.8, 77.2, 77.6, 111.8, 119.1, 126.2, 137.3, 167.2.

4i: (M. P. 157[°] yields 59 %.). IR(KBr): 3335(N-H-phenothiazine), 2961 (C-H-Aromatic stretch), 1742.9, 1744, 1650, 1332, 785 (C-S), 518; H¹NMR(300MHz DMSO) δ 2.54, 4.28, 3.54;¹³CNMR(300MHz,DMSO*d*₆), 11.4, 13.4, 13.9, 7.0, 38.9, 9.2, 39.5, 39.7, 40.0, 40.3, 58.5, 76.8, 77.2, 77.6, 111.4, 119.1, 124.2, 147.

R=H, 2-OH, 4-OH, 2-NO2, 4-NO2, 3-NO2, 2-Cl, 4-Cl, -OCH 3, -N(CH 3)2.

Scheme-I

CONCLUSION

It is concluded for scheme that and efficient method for the synthesis of Benzene-(1, 4-di-imine)-substituted-10H-4/, 4/-di-phenothiazine **(4a-i)** with excellent yield have been developed. The result of this study indicate that the present synthetic method is a simple efficient, inexpensive and easy synthesis of biologically active compounds Benzene-(1, 4-di-imine)-substituted-10H-4/, 4/-di-phenothiazine **(4a-i)**. These compounds showing good result tested at 100 mg/ml concentration against E. coli, S. aureus, Ps. acruginosa, P. vulgaris, A. niger and C. albicans as compare to simple di-amine.

ACKNOWLEDGMENT

The author are thankful to Principal, Dr. R. S. Bobhate, Vidya vikas Art, Commerce and Science College, Samudrapur and Head of Dept. & Principal of Pravara Rural Engineering College, Loni for providing research facilities.

REFERENCES

- Y. IJeno. Y. Takeuchi, J. KoshJtani and T. Yonhida, J. (1978). Hetrocyclic Chem, 15, 721.
- E. R. Niehl, S. P. Khanapure, U. Siriwadane, M. A. Tschantz, (1989) Hetrocyclic, 29, 485.
- N. Motohashi, (1988) Antitumor Activities of Phenothiazines, in R. R. Gupta, ed., phno-thiazines and 1,4-benzothiazines, Elsevier., Amsterdam, 774.
- W. J. Evans and S. J. Smiles, (1935) J. Chem. Soc., 181.
- W. J. Evans and S. J. Smiles, (1935) J. Chem. Soc., 1.263.
- C. F. Weight and S. J. Smiles., (1935) J. Chem. Soc., 340.
- Harwood P D and Jestad A C, (1938) J. Parasital, 24, 16-18.
- Halpern B N, (1945) J. Am Med Assoc, 129, 1219-1222.
- Kalinowsky L B and Hoch P H, (1961) *Somatic treatment in phychiatry:* Academic press. New York, 122-132.
- Clane N T, Witten L K and Eilmer D S, (1947) Aust. Ver. J, 23, 344-346.
- Douglass J R and Baker N F, (1956) J. Am. vet, 17, 318-320.
- Ddhlbom R and Ekstramd T, (1966) Arch Intern Pharmacodynamics, 159,70-78.
- Craig J C and Tate H F, (1901) Progr Drug Res, 3, 75-78.
- Janssen P A J and Niemegeers C J E, (1965) *Arzneim Forsch*, 15, 1196-1199.