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Abstract: In this paper, we have solved the Einstein field equation for the scalar factor R(t), density 

ρ(t) and cosmological term , by assuming , where  is a parameter of  in the 

context of Higher dimension space time. It has been shown that model 
 
is equivalent to 

,  , and  models, when the condition for R(t), ρ(t), and Λ(t) are expressed in 

terms of , the matter and vacuum energy density of the universe respectively. 
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1. Introduction 

Recent years have witness resurgence of interest in the possibility that a positive Λ-term 

(a cosmological constant) may dominate the total energy density in the universe. The 

observations on magnitude and redshift of type Ia Supernovae made, independently, 

Perlmutter et. al. (1999) and Riess et. al. (1998) appear to suggest that our universe may 

be accelerating with a large fraction of the cosmological density in the form of 

cosmological Λ-term. 

On the other hand, models with a dynamic cosmological term Λ(t) has been considered in 

numerous papers to explain the observed small value Λ, which is about 120 orders of 

magnitude below the value for the vacuum energy density predicted by  quantum field 

theory (Wienberg 1989, Carroll et. al. 1992, Sahni and Starobinsky 2000). It has been 

argued that, due to the coupling of the dynamic degree of freedom with the matter fields of 

the universe, Λ relaxes to its present small value through the expansion of the universe 

and the creation of photons. This approach is essentially phenomenological in nature but 

explains, in a natural way, the present small value of Λ which might be large in the early 

universe. From this point of view, the cosmological constant is small because the universe 

is old. 

As the dynamics of the variable Λ-models depends sensitively on the chosen dynamic law 

for the variation of Λ and, in general, becomes altogether different from the dynamics of 
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corresponding constant Λ-models, there is no reason to believe that the observations 

distant objects would also agree with the variable Λ-models given that they agree with the 

corresponding constant Λ-ones, especially for the same estimates of the parameters. In 

this view, it would be worthwhile to test the consistency of these observations with the 

variable Λ-models and find the estimates of different cosmological parameters required by 

these models.  

As a consequence of the search for current status of this acceleration some 

phenomenological models of Λ, viz. ,  , and , recently Ray and 

Mukhopadhayay (2004) have shown the equivalence of this models. They also have 

established a relationship between the parameters  of the respective models. It 

was mentioned that  model can be viewed as a combination of 

models (since, . Therefore, for  the models  

become identical, where R(t) is the scalar factor of the Universe and  is the Hubble 

parameter. Since,  model depends on  and , and  model has already been 

studied by Ray and Mukhopadhayay (2004), the point of interest is now  model. 

Although a number a phenomenological models have been listed by Overduin and 

Cooperstock (1998) (also see the references in Ray and Mukhopadhayay (2004) but model 

 is not included there.    

This chapter is the generalizations of the work obtained earlier by Mukhopadhay and 

Saibal for higher dimensional space time. In this chapter we solve the Einstein field 

equation for the scalar factor R(t), density ρ(t) and cosmological term Λ(t), by assuming 

, where  is a parameter of  in the context of higher dimension space time. It 

has been shown that models is equivalent to ,  , and  models, when the 

condition for R(t), ρ(t), and Λ(t) are expressed in terms of , respectively, they are 

expressed in the terms of , the matter and vaccum energy density of the universe . 
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The chapter is organized as follows:- Section 2.2 and 2.3 deals with Einstein field 

equations and their solutions. An inter-relationship of  w ith  are presented in 

section 2.4. Section 2.5 deals with the physical implications and limit of the deceleration 

parameter for the present models equivalence of  model with ,  and 

  models. Finally, all the results and their significance are discussed in section 2.6. 

2. Einstein Field Equations 

Consider the line element  

               , (1) 

where, R(t) is a scale factor and A(t) is the mass scale factor. 

The Einstein field equations are given by 

    (2) 

where,  is the time dependent cosmological constant.  

Also,  is the energy-momentum tensor, in the presence of perfect fluid and has the form    

,                              (3) 

where  are respectively, the energy and the pressure of the cosmic fluid, and  is 

the fluid five velocity, such that,  and  and . 

Hence, the Eqn. (2) yield 

                          (4) 

          (5)                                

               (6) 

Now, put 

  ,              (7) 

in Eqns. (4), (5) and (6) we get  
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                                 (8) 

,                         (9) 

,                            (10) 

where, over dot indicates a derivative with respect to time t. 

Let us now consider the barotropic equation of state in the form 

 ,                                                         (11) 

where ω, the equation of state parameter, for the dust, radiation, vacuum fluid and stiff 

fluid can take the constant values 0, , -1,+1 respectively. 

Let us assume that  does not vary with space and time. Then we assume 

,                                                       (12) 

where,  is a free parameter, we get from the Eqns. (8) and (10) the following two modified 

equations 

                    (13)  

and                      (14) 

Eqns. (13) and (14) on simplification, yield the differential equation 

                     (15) 

2.3  The Models: Now Eqn. (15) on integration gives 

                       (16) 

Putting    in Eqn. (16) and integrating it further we get our general solution set as 

 ,                   (17) 

, (18) 

,          (19) 

where  is an integration constant. 
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Case (i) Dust case  : 

For dust case, Eqns. (17), (18), (19) and (16) respectively takes the form 

, (20) 

,        (21) 

                             (22) 

                 (23) 

Eqn. (2.23) suggests that for physically valid we should get . So µ can be 

negative as well. Again, from Eqn. (2.24) we find that for a repulsive Λ, the constraint on µ 

is that it must be negative. Thus, Eqns. (2.23), (2.24) and (2.25) all points towards a 

negative µ. 

Case (ii) Radiation case  : 

For radiation case, Eqns. (2.18), (2.19), (2.20) and (2.17) respectively takes the form 

      (2.26) 

,                         (2.27) 

 ,                                    (2.28) 

  .                                                  (2.29) 

Eqn. (2.27) suggests that for physically valid ,  whereas Eqn. (2.28) demands a 

negative µ for repulsive Λ. Thus, in this case also a negative µ is necessary for Eqns. (2.27) 

- (2.29).   

Using the value of  from Eqn. (2.25) in (2.26) we get 

, (2.30) 

where,  is the matter-energy density of the Universe. 

Again, using Eqn. (2.25)  we get from Eqn. (2.24) 
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, (2.31) 

where,   is the vacuum-energy density of the Universe. 

Adding Eqns. (2.30) and (2.31) we get  

, (2.32) 

which is another form of Eqn. (2.2)  for flat Universe. 

Also, using the value of  from Eqn. (2.30) we get from Eqn.  (2.25) 

.                                   (2.33) 

Thus, if  are the values of  and  at the present epoch, then 

.                              (2.34) 

2.3.1 Three different forms of  Λ 

(i)  Model for :- 

If we use , where  is a constant, then Eqn. (2.12) becomes 

,        (2.35) 

  (2.36) 

Integrating Eqn. (2.36), we get  

, (2.37) 

where,  is an  integrating constant. 

Now, on integrating above Eqn. (2.36) we get 

  (2.38) 

Now, from Eqn. (2.10), we have  

  ,                              (2.39) 
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 ,                              (2.40) 

 , (2.41) 

    (2.42) 

 (ii)  Model for  :- 

If we consider , where  is a constant, then Eqn. (2.12) reduces to 

          (2.43) 

Integrating above Eqn. (2.43) we get 

   (2.44) 

where,  is an  integrating constant. 

Now, from Eqn. (2.10) we obtain 

        (2.45) 

,               (2.46) 

                          (2.47) 

(iii)  Model for  :- 

If we set , where  is a free parameter, then using Eqn. (2.10),  

Eqn. (2.12) reduces to 

 (2.48) 

or                                                     (2.49) 

Integrating above Eqn. (2.49) we get 
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 (2.50)  

where,  is an  integrating constant. 

Now, from Eqn. (2.10) we obtain 

,                             (2.51) 

,                            (2.52) 

.                (2.53) 

2.4 Equivalent Relationship Between Λ-Dependent Models 

Now, let us find out the inter-relation between  hence the equivalence of the 

different forms of the dynamical cosmological terms  and . 

Using Eqn. (2.42) in Eqn. (2.40) in the definition of the cosmic matter-density parameter 

 , we get      

,                    (2.54) 

where,  is the cosmic matter-density parameter for the α- related dynamic Λ-model. 

Using Eqn. (2.42) in Eqn. (2.41) in the definition of the cosmic vacuum-density 

parameter  , we have   

, (2.55) 

where, in the similar fashion,  is the cosmic vacuum-density parameter for the α- 

related dynamic Λ-model. From Eqns. (2.54) and (2.55) we obtain 

, (2.56) 

which is the relation between the cosmic matter and vacuum-density parameters. 

Similarly, from Eqns. (2.45), (2.46) and (2.47) we obtain 



 

 

 

|| 464 

Feb. 2015, 
Special Issue (2) 

 

   (2.57) 

                          (2.58) 

where,   are respectively the cosmic matter and energy density parameters for 

the �- related dynamic Λ-model. 

Adding Eqns. (2.57) and (2.58) we get  

 (2.59) 

which is again the relation between the cosmic matter and vacuum-density parameters. 

In the same manner from Eqns. (2.51) – (2.53) to the cosmic matter and vacuum energy 

density parameters,  are respectively for the model  also satisfy the 

relation 

           (2.60) 

where, . 

Thus from relations (2.56), (2.59) and (2.60) without loss of generality, we can set  

 (2.61) 

, (2.62) 

where,  are respectively the cosmic matter and vacuum energy density 

parameters which in absence of  any curvature satisfy the general relation 

 

2.4.1  Equivalence of three forms of Λ 

By the above relation, we get 

 (2.63) 

or                               (2.64) 

2.5  Physical Features of the Models  

The deceleration parameter  is defined as  
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. (2.65) 

Thus, using Eqn. (2.18) we have 

 (2.66) 

For an accelerating universe  and hence 

,  

 (2.67) 

Eqn. (2.67) tells us that for a dust-filled accelerating universe, µ should be less than -1. 

We have already shown that for physically valid ρ,  and t, µ must be negative.        

2.6  Conclusion  

In the chapter, by choosing phenomenological model of , , it has been shown that 

this model of  is equivalent to three types of Λ, , , and  . A relationship 

is established between the parameter in both dust and radiation cases. Since , it is 

clear that the dependency of the parameter  is due to   part because a relation 

of  with   also contains  and hence  behaves differently with cosmic matter 

and vacuum energy parameter in the dust and radiation cases. 

Finally, it should be mentioned that any linear combination of ,   and  

is equivalent. 
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