

Synthesis and Photoluminescence Properties of Eu³⁺ Doped Double Perovskite Tungstate

K.V. Dabre¹, S.J. Dhoble^{2*}

¹Deptartment of Physics, Arts, Commerce & Science College, Koradi, Nagpur-441111, India, ²Department of Physics, R.T.M. Nagpur University, Nagpur-440033, India. *<u>corresponding author email: sjdhoble@rediffmail.com</u>

Abstract

The microcrystalline samples of double perovskite tungstates M_3WO_6 (M = Ca, Sr and Ba) doped with Eu³⁺ ion were synthesized by modified solid state reaction method. The phosphor materials were characterized by XRD, SEM and photoluminescence (PL) spectroscopy. The XRD result reveals the formation of well crystallized and phase pure microcrystalline phosphor samples. Both of the PL excitation and emission spectra of M_3WO_6 :Eu³⁺ phosphors show very similar nature. The excitation spectra of characteristic yellow emission of Dy³⁺ ion show a broad CT band of (WO₆)⁶⁻ complex in UV region. The intense host absorption for characteristic yellow emission of Dy³⁺ ion indicates the effective energy transfer from tungstate host to Dy³⁺ ion. The energy transfer from (WO₆)⁶⁻ complex to Dy³⁺ ion is more efficient in Sr₃WO₆ than Ca₃WO₆ and Ba₃WO₆. The color of Dy³⁺ doped M₃WO₆ phosphors varies from orange to cyan color due to different yellow to blue intensity ratio.

1. Introduction

Tungstate is one of the interesting host materials that have attracted a great deal of interest owing to self-activation, good stability for physical conditions (chemical and thermal) and wider applicability in various fields such as scintillation, solid state laser, electro-optic applications, catalytic etc. Tungstate based phosphors show broad excitation and emission bands due to the ligand to metal charge transfer (CT) transition of $(WO_4)^{2-}$ and $(WO_6)^{6-}$ oxyanion complex. Partially filled deep-lying 4f shells of rare earth ions causes interesting optical properties which make them the favorite activators for doping in various hosts. However, the sharp excitation line of rare earth is less effective and higher concentration leads to quenching of emission. Thus the host sensitization of rare earth ions in tungstate materials is actively studied from last decades [1-11]. The double perovskite tungstate offer simplicity of crystal structure as well as other important physical properties such as ferroelectricity, dielectricity, photocatalytic, magnetoresistance etc. [10-15] which make it the material of interest since 1950s [2,3]. M_3WO_6 (M = Ca, Sr and Ba) is another member of double perovskite tungstate family were first discovered in an investigation of the influence of excess of alkaline earth oxide on the luminescence properties of MWO₄ [16] and their synthesis and structural properties were studied by Belyaev et al. [17]. Recently, King et al. [18] studied the structural properties of Sr₃WO₆ and Pang et al.[20] reported interesting electrical properties of Ca₃WO₆ and showed that it could be good candidate for microwave application. However, very few attempts were made to study the luminescence properties of Eu^{3+} doped M_3WO_6 (M = Ca and Sr) phosphor [20-24], while the other rarer earth activation and Ba_3WO_6 did not studied so far. Hence,

the investigation of luminescence properties of Eu^{3+} in M_3WO_6 (M = Ca, Sr and Ba) and there correlation between them were considered in this work.

2. Experimental

The pure and Dy^{3+} doped samples of M_3WO_6 were synthesized by modified solid state method. The analytically pure starting chemicals are used without further purification for the synthesis of pure and rare earth doped M_3WO_6 . The typical chemical reaction for the synthesis of pure host material is given as follows:

 $3MCO_3 + H_2WO_4 \rightarrow M_3WO_6 + 3CO_2 + H_2O$

The stoichiometric amount of the starting chemical are taken in mortar pestle and pulverized thoroughly for 1 Hr. Then this reaction mixture was taken in porcelain crucible and heat treated at 600°C for 12 Hrs. followed by slow cooling to room temperature inside the furnace. Then this reaction mixture again reground thoroughly for 1 Hr. and finally sintered at 1250°C for 4 Hrs. and allowed to cool slowly to room temperature inside the furnace. The furnace. The highly sintered sample was crushed to fine powder and used as is for further characterization.

The phase purity and structural analysis of the pure sample was examined by XRD measurement. The XRD patterns were obtain at room temperature from PANalytical X'Pert Pro X-ray diffractometer with Cu K_a radiation ($\lambda = 1.5406A^{\circ}$) operating at 40 kV voltage and 30 mA current. The room temperature PL excitation and emission spectra of as synthesized samples were recorded on the Shimadzu RFPC5301 Spectrofluorophotometer with constant spectral slit width of 1.5nm.

3. Result and Discussion

Fig. 1. X-ray diffraction pattern of (a) Ca_3WO_6 , (b) Sr_3WO_6 and (c) Ba_3WO_6 .

In order to characterize the phase purity and crystallinity of the as-prepared powder samples of double perovskite tungstate (M_3WO_6 ; M = Ca, Sr and Ba), the XRD patterns for all samples were examined. The XRD patterns of M_3WO_6 are illustrated in **Fig. 1**. The position of most of the diffraction peaks of diffractograms of samples are in good agreement with the corresponding standard JCPDS files. Few additional peaks were noted in diffractograms; the intensity of these peaks is negligible as compared to intense peak of M_3WO_6 , excluding these peaks the as synthesized samples are said to be phase pure. Sharp and intense diffraction peaks reveals the well crystallization of the phosphor material.

The PL excitation spectra of M_3WO_6 :Eu³⁺ (2mol%) by monitoring ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺ at around 615nm in red spectral region is shown in Fig. 2a-c. The PL excitation spectra of Ca₃WO₆:Eu³⁺ (2mol%) consists of a less intense broad band (250-340nm) and some sharp lines at room temperature. The broad excitation band peaking at 305nm is ascribed to the involvement of CT transition from filled 2p orbitals of oxygen to empty 5d orbitals of both tungsten and europium. The sharp characteristic excitation peaks of Eu³⁺ at 364, 384, 397, 417 and 467nm corresponds to the intra f-f transitions within 4f⁶ configuration of Eu³⁺, which are attributed to ${}^7F_0 \rightarrow {}^5D_4$, ${}^7F_0 \rightarrow {}^5L_7$, ${}^7F_0 \rightarrow {}^5L_6$, ${}^7F_0 \rightarrow {}^5D_3$ and ${}^7F_0 \rightarrow {}^5D_2$ transitions. The nature of excitation spectra of Eu³⁺ doped M₃WO₆ phosphors is very similar except the peak of broad band is at around 310nm. The intensity of broad excitation band in is relatively much lower than characteristic peaks of Eu³⁺ ion, which is in good agreement with earlier report [21-26]. The low intensity of broad band may be the results of overlapping of CT band of $W^{6+}-O^{2-}$ and $Eu^{3+}-O^{2-}$; which indicates the less efficient energy transfer from (WO₆)⁶⁻ complex to Eu³⁺ ion. In double perovskite tungstate Eu³⁺ ion substituted at A site will have W-O-Eu bond close to 90°, so the wavefunction overlaps (using π bonding) and the energy transfer efficiency is reduced [4,26]. This result is in good agreement with the other

tungstate based phosphors [26,27].

The room temperature PL emission spectra of M_3WO_6 :Eu³⁺ (2mol%) (M =Ca, Sr and Ba) under the blue light excitation of 467nm is shown in **Fig. 3a-c**. The emission spectrum of Eu³⁺ doped Ca₃WO₆ phosphor consists of intense and sharp characteristic peaks at 514, 537, 543, 582, 591 and 615nm which are attributed to ${}^{5}D_{I} \rightarrow {}^{7}F_{J}$ (I, J = 0, 1 and 2) transitions of Eu³⁺ ion. It is seen that the nature of emission spectrum of Eu³⁺ doped Sr₃WO₆ phosphor is same as that of Eu³⁺ doped

Feb. 2015, Special Issue (2)

Ca₃WO₆ phosphor; however, the emission spectrum of Eu³⁺ doped Ba₃WO₆ phosphor shows only two peaks at 590nm and 614nm which are attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions respectively, and the emission related to transition from higher states (${}^{5}D_{1,2}$) is not observed. It is worthwhile to note that in all three emission spectra show most intense emission peak at around 615nm in red region which is attributed to ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. This red emission from Eu³⁺ luminescence center has better perception to human eye. This red emission is attributed to ED (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) transition of Eu³⁺ which is forbidden electric dipole transition. However, admixture of odd-parity electronic configuration to the pure 4f one (like a non-centrosymmetric crystal field component) can allow the ED transitions partially and their probability is much higher than the probability of parity-allowed MD (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) transition. The site symmetry of Eu³⁺ ion in the host lattice can be predicted by asymmetry ratio which can be defined as,

asymmetry ratio =
$$\frac{I({}^{5}D_{0} \rightarrow {}^{7}F_{2})}{I({}^{5}D_{0} \rightarrow {}^{7}F_{1})}$$

Where, $I({}^{5}D_{0} \rightarrow {}^{7}F_{2})$ and $I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ are the intensities of ED and MD transitions respectively. The asymmetry ratio is greater than 1 when Eu³⁺ substituted at non-centrosymmetric site and the ratio is less than 1 when Eu³⁺ substituted at centrosymmetric site in the host lattice. In present case the asymmetric ratio is found to be 4.39 (Ca₃WO₆:Eu³⁺), 4.54 (Sr₃WO₆:Eu³⁺) and 2.01 $(Ba_3WO_6:Eu^{3+})$ which indicates that Eu^{3+} is substituted at A site in the host lattice and this is in good agreement with the earlier report [21-25]. This could be understood that the substitution of Eu^{3+} at M^{2+} site in M_3WO_6 is accompanied by M^{2+} ion vacancy (V_M) (due to charge imbalance) and lattice strain (due to different ionic radius). These defects in lattice reduce the local site symmetry at Eu³⁺ site and also act as luminescence quenching center. The improvement in emission intensity could be achieved by introducing Na⁺ ion which will act as charge compensator and reduces lattice strain [24]. The effects of Eu^{3+} concentration on the intensity of red emission peak were also performed and the results of which are displayed in Fig. 4a-c. It is seen that the intensity of red emission peak increases with increase in Eu³⁺ concentration without quenching up to 2mol%.

Fig. 4. Variation of emission intensity of (a) Ca₃WO₆:Eu³⁺ (615nm), (b) Sr₃WO₆:Eu³⁺ (616nm) and (c) Ba₃WO₆:Eu³⁺ (614nm) with molar concentration of Eu³⁺.

4. Conclusion

The Eu³⁺ doped microcrystalline samples of M_3WO_6 (M = Ca, Sr and Ba) phosphor were successfully synthesized via modified solid state reaction method. The XRD patterns reveal the formation of well crystallized and phase pure samples. The nature of excitation spectra of Eu³⁺ activated M_3WO_6 phosphors is very similar for M = Ca, Sr and Ba. The characteristic intense red emission of Eu³⁺ ion in M_3WO_6 shows occupation of non-centrosymmetric site by Eu³⁺ ion in the host lattice. The Eu³⁺ activated M_3WO_6 phosphors did not show concentration quenching up to 2mol% concentration of Eu³⁺ ion in the host lattice. The energy transfer from (WO₆)⁶⁻ complex to Eu³⁺ ion is the matter of interest for the development of the phosphor for SSL application but future work has to be done in order to improve the absorption in near UV region.

5.Acknowledgement: One of the author KD is thankful to U.G.C., Pune for financial assistance for this work.

6.References

- [1] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R 71 (2010) 1.
- [2] J. H. G. Bode, A. B. V. Oosterhout, J. Lumin. 10 (1975) 237.
- [3] G. Blasse, A. F. Corsmit, J. Solid State Chem. 6 (1973) 513.
- [4] X. Zhang, Z. Li, H. Zhang, S. Ouyanga, Z. Zoua, J. Alloys Compd. 469 (2009) L6.
- [5] M.H. Chang, D. Das, P.V. Varde, M. Pecht, Microelec. Reliab. 52 (2012) 762.
- [6] X. Sun, Z. Hao, C. Li, X. He, H. Qi, L. Yu, Y. Luo, J. Zhang, J. Gao, R. Zhong, J. Lumin. 134 (2013) 191.
- [7] V. Sivakumar and U. V. Varadaraju, J. Solid State Chem. 181 (2008) 3344.
- [8] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin, 1994.
- [9] A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, Appl. Mater. Interfaces 6 (2014) 252.
- [10] F. Lei, B. Yan, J. Opt. and Adv. Mater. 10 (2008) 158-163.
- [11] D. E. Bugaris, J. P. Hodges, A. Huq, H. C. Loye, J. Solid State Chem. 184 (2011) 2293–2298.
- [12] D.D. Khalyavin, J. Han, A.M.R Senos, P.Q. Mantas, J. Mater. Res. 18(11) (2003) 2600-2607.
- [13] C.A. Lo'pez, J. Curiale, M. del C. Viola, J.C. Pedregosa, R.D. Sa'nchez, Physica B 398 (2007) 256-258.
- [14] H. Iwakura, H. Einaga, Y. Teraoka, J. Novel Carbon Resources Sciences 3 (2011) 1-5.
- [15] M. Gateshki, J. M. Igartua, E. H. Bocanegra, J. Phys.: Condens. Matter 15 (2003) 6199-6217.
- [16] H. P. Rooksby and E. G. Steward, Nature, 157 (1956) 548.
- [17] I.N. Belyaev, V.S. Filip'ev, E.G. Fesenko, J. Structural Chem., 4(5) (1963) 660.
- [18] G. King, A.M. Abakumov, J. Hadermann, A.M. Alekseeva, M. G. Rozova, T. Perkisas, *PoM. Woodward, G.V. Tendeloo, E.V. Antipov, Inorg. Chem.* 49 (2010) 6058. *VISHWASHANTI MULTIPURPOSE SOCIETY* (GLOBAL PEACE MULTIPURPOSE SOCIETY)
 386

- [19] L.X. Pang, D. Zhou, J Mater Sci: Mater Electron 22 (2011) 807.
- [20] F.M. Emen, R. Altinkaya, S. Sonmez, N. Kulcu, Acta Physica Polonica A, 121 (2012) 249.
- [21] F.M. Emen, R. Altinkaya, J. Lumin. 134 (2013) 618.
- [22] S. Zhang, Y. Hu, L. Chen, X. Wang, G. Ju, Y. Fan, J. Lumin. 142 (2013) 116.
- [23] X. Zhao, Y. Ding, Z. Li, T. Yu, Z. Zou, J. Alloys Compd. 553 (2013) 221.
- [24] X. Zhao, J. Wang, L. Fan, Y. Ding, Z. Li, T. Yu, Z. Zou, Dalton Trans. 42 (2013) 13502.
- [25] K.V. Dabre, S.J. Dhoble, J Alloys Compd. 617 (2014) 129.
- [26] G. Blasse, J. Chem. Phys. 45 (1966) 2356.
- [27] V. Sivakumar and U. V. Varadaraju, J. Electrochem. Soc. 152 (10) (2005) H168.
- [28] K.V. Dabre, S.J. Dhoble, J Lumin 150 (2014) 55.

A Four Monthly Peer Reviewed Journal VISHWASHANTI MULTIPURPOSE SOCIETY (GLOBAL PEACE MULTIPURPOSE SOCIETY)