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Abstract 

Aminzadeh (1991) has reported Tolerance Intervals for Rayleigh distribution based on Pivotal Quantity.  Recently 

Kundu and Raqab (2003) have discussed different methods of estimations for the parameters of the Generalized 

Rayleigh Distribution introduced by Surles and Padgett (2001).  In this article, based on Maximum Likelihood 

Estimators of the parameters, we provide an asymptotic β-expectation and β-content γ-level Tolerance Intervals for 

this distribution using results due to Shirke et. al. (2004). The performance of the proposed β-expectation 

Tolerance Interval is assessed though simulations study.  

Keywords: β-expectation Tolerance Intervals, β-content γ-level Tolerance Intervals, Expected Coverage, Asymptotic 

Distribution.  

 

1. Introduction 

 In general, term Tolerance Interval (TI) is an interval determined from observed values of a 

random sample for the purpose of drawing inferences about the proportion of a distribution contained 

in that interval.  Usually TI is designed to capture at least a given proportion of some distribution. 

Two types of TI have received considerable attention in the literature;β-content γ-level TI and β-

expectation TI. In order to be more specific about the meaning of TI, let X be a measurable 

characteristic having a distribution function F(x;θ),  θ ε Θ ⊆ ℜ.  Let L(X) and  U(X)   be two functions of  

observations such that  L( X) < U(X).  Then (L(X), U(X)) is called a βcontent γlevel TI,  if for given β, γ 

∈ (0, 1), γβ})dt
)XU(

)XL(

θf(t;P{ =≥∫ , for every θ ε Θ.  If L(X) and U(X)   are determined so that 

βθ)dtf(t;E

)XU(

)XL(

=













∫  for every θ∈Θ, then (L(X), U(X)) is called a β-expectation Tolerance Interval, where 

)θf(x;  is probability density function (pdf) of X. The quantity )dt
)XU(

)XL(

θf(t;∫   is called the sample 

coverage and L(X) and U(X) are called lower and upper tolerance limits, respectively. We set L(X) = −∞ 

to obtain upper TI and set U(X) = ∞ and obtain lower TI.   In the present study, we obtain only upper 

tolerance limits.   

Wilks (1941) treated the problem of determining TIs in pioneer article.  Since then a large 

number of papers dealing with this and other aspects of tolerance limits have appeared in the 

literature.  Jilek(1981) classifies papers according to general results, distribution free results, normal 

and multivariate normal distributions, gamma, exponential, Weibull and other continuous and 

discrete distributions.  Patel(1986) provided a review, which contains a large collection of known re 

Aminzadeh (1991) has reported Tolerance Intervals for Rayleigh distribution based on Pivotal 

Quantity.  Recently Kundu and Raqab (2003) have discussed different methods of estimations for the 

parameters of the Generalized Rayleigh Distribution introduced by Surles and Padgett (2001). sults on 

βcontent γlevel TIs for some continuous and discrete univariate distributions.   

 

2.  TIs for Exponentiated Scale family of distribution 

Shirke, Kumbhar and Kundu (2004) have considered the model   

 ( )[ ] 0},θ0,α;
α

θx/G) α,θ (x;
X

F:F{ >>==ℑ                          (1) 

where G(·) is known cumulative distribution function (cdf) and named as  Exponentiated Scale 

family of distribution which is analogous to Lehmann alternatives (see Lehmann (1953)).  Under the 
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assumption that all the Cramers regularity conditions are satisfied; by distribution belongs to ℑ, the 

TIs are  developed for this family. 

 Suppose X1, X2 ,…,Xn  are independent and identically distributed (i.i.d) with  cdf   

FX(x; θ, α); member of ℑ . The  pdf of Xi  is 

        ( )




 >∈−

=
otherwise,0

0αθ,  S,xx/θ
'
x

G
1α

α[G(x/θ)]
α)θ,(x;

i
X

f                   (2) 

where S is the support of X, which is independent of parameters and )(
'
XG ⋅  is the derivative of G(·) 

with respect to x , and is the pdf of  X correxponds to G(·). 

           2.1  ββββ-expectation Tolerance Interval and its Coverage 

Let ( )  Tα,θµ =  and S)µ(
β

x ∈  be the lower βth percentile of  FX(x;θ,α).  Therefore,  we have       

βα)θ,);µ(
β

(x
X

F =         for β∈(0,1). 

This implies               )
α1/

β(
1

Gθ)µ(
β

X
−= ,      (3)  

 where G-1(⋅) is the inverse function of G(⋅).    Since  ( )α,θµ = T is unknown, we replace it by its 

Maximum Likelihood Estimator(MLE).    If  
T

)α,θ(µ
∧∧

=
∧

  is the MLE of  µ , then by invariance 

property of MLE we have  MLE of )µ(
β

x  is  

)α1/β(1Gθ)µ(
β

x

∧
−

∧
=

∧
. 

Therefore, we propose an approximate upper β-expectation TI as  

( ) )α1/β (1Gθ(0,XI
1

∧
∧ −= ).                             (4) 

Expected coverage  of (4) is given in the following theorem. 

Theorem(2.1): Approximate expected coverage of I1(X) is given by 

,
n

12
σ

)µC(
n

2
2
σ

)µB(
n

2
1
σ

)µ( β]}µ);µ(
β

{X
X

F E[ +++=
∧

A             

where  ( ) ( ) ( )[ ] ( )[ ] ( )[ ]
( ) ( )

( )
( )





′′−

′

′′′−+′−−= tθθG0.5
txG

tθGtxθG1αtGα2tθG2αtGα10.5αµA  

 ( ) ( )[ ] ( ) ( )[ ]tGlog0.51tGlogtG1-αµB α+α= , 

and ( ) ( )[ ] ( )
( ) ( )

( )
( )
( ) 





′
θ′′

+θ′−αα=
txG

txG

tG

tG1
tGlogtGµC   

with   t = x/θ,      ( ) =′ tGx  ∂G(t)/∂x,    

 ( )=′θ tG ∂G(t)/∂θ,     ( ) =′′ θ tGx ∂2G(t)/∂x∂θ, 

 ( ) =′′θθ tG ∂2G(t)/ ∂θ2   

while   
n

2
1σ

,   

n

2
2σ

   are asymptotic variances of  

∧∧
αandθ  respectively  and   

n

12σ
= Cov(

∧∧
α,θ )  is an  asymptotic covariance of  

∧∧
α,θ .   

These quantities can be obtained from Fisher information matrix I. 
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2.2.  ββββ-Content γγγγ-level Tolerance Interval 

Let I2(X) = ( 0,  δ βX
∧

) be an upper β-Content γ-level TI for the distribution having cdf (1).   The 

factor  δ > 0 is to be determined such that I2(X) is  a β-Content γ-level TI for β∈(0, 1) and  γ∈(0, 1). 

That is               γβα,θ;βXδFP =≥
∧




















. 

Equivalently we get  ( )
γ

α1/β1Gθ
βXP =

δ

−
≥

∧









.                           (5) 

We note that  







→

∧
)/nµ (

2
σ),µ(βXAN)µ(βX ,   

where   T-12 HIH)µ(σ = , 

I  : Fisher information matrix,         and  
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)µ(X
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Using the asymptotic distribution of 

∧
µ  we have 

      

1

)α1/β(1Gθ

/)µσ(
γ1

Z

1δ

−

















−
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+=

n
,                (6) 

where Z1-γ is the 100(1-γ)th percentile of the standard normal variate.  As δ depends on both the 

parameters θ and α   replacing θ and α by their respective MLEs, an asymptotic upper β-content γ-

level TL of  I2(X)  is proposed as 

U (X) =
.β )(X

1

)
α1/

(β
1

Gθ

n)/µσ(γ1Z
1

∧
µ

−



















∧
−

∧

∧

−
+                (7) 

 

3. Tolerance Intervals  for Generalized Rayleigh Distribution (GRD) 

 

Surles and Padgett (2001) introduced two-parameter Burr Type X  distribution and 

named as the Generalized Rayleigh Distribution.  Kundu and Raqab (2003) discussed different 

methods of estimations for the parameters of the GRD.   Here, we obtain  TIs for GRD based on MLE 

of the parameters. [For expressions of MLE see Kundu and Raqab (2003)].  For α > 0 and θ > 0, the 

CDF of two-parameter GRD is obtained by substituting  ( ) 2
)/exp(1/ θθ xxG −−= ; in (1) as 

   

( ) ( )( )( )α

θθα
2

/exp1,; xxF −−=            x > 0.            (10) 

Therefore, GRD has the density function 

( ) ( ) ( )
α

θθ

θ

α
θα 






 





−−





−= 2/exp12/exp

2
2,; xxxxf ; x>0,              (11) 

where α is the shape parameter and θ is the scale parameter respectively.  

 

3.1  ββββ-expectation TI and its Coverage for GRD 

The lower βth percentile of  (10) obtained from (3) is   

      )
1/

X
α

β-ln(1-θ)µ(β = .  
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Therefore, an approximate upper βexpectation TI  for GRD is obtained from (4) is  

( )





































 ∧

−−
∧

= αβθ /1
1ln,0X

1
I

.                             (12) 

Expected coverage of the (12) is given by  theorem(2.1),  

where   ( )








−−+−−−= )72t6f)(1(f2α)t1(2αf)1α(µA           

  ( ) ( ){ }fα.f)(αf)(αµB - −+−−= 1ln5011ln11
, 

and       ( ) 1θ)12(t)f2αt1(f)1(ln1αf)1(2µC −−++−−−=








 . 

with t = x/θ, f = exp(-t2).  

 

3.2 . ββββ-Content γγγγ-level TI for GRD 

An asymptotic upper limit of β-content γ-level TI  for GRD distribution is  

I2(X) = ( 0,  δ βX
∧

), 

where the constant δ is given by 

           

1

)/α1-β1(ln-θ

n)/µσ(γ1Z
1δ

−














−

+=
.                  (13) 

Therefore, an asymptotic upper β-content γ-level tolerance limit of I2(X) is proposed as 

U (X) =
.β )µ(X

1

)
α/1

-β1(ln-θ

n)/µσ(γ1Z
1

∧

−





















∧∧

∧

−
+

               (14) 

 

We assess the performance of  both types of TI through simulation experiments. 

4. Simulation Study  

Upper ββββ-expectation TI of GRD: 

  Note that Theorem-2.1 gives an approximate value of the actual coverage of the interval (12) 

for GRD.  Hence we use simulation  to  study performance of the proposed β-expectation TI using 

MLEs of θ and α,  namely, 

∧
θ  and 

∧
α  respectively.  In simulation study  

• we generate  n (=10, 25, 50,100) observations from the GRD with with  θ = 1,  and α=2.  

• We obtain 

∧
θ  and 

∧
α  by solving likelihood equations simultaneously.  

• These estimates are then used to compute )α1/β  -log(1-θ)µ(
β

X

∧∧
=

∧
.    

• Repeating the process  1000 times  we obtain these many  estimates of  )(X µβ , and  

• Compute expected coverage  of the interval I1(X).   

• Corresponding values are tabulated in the following Table for β = 0.95 and 0.975.  
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Expected coverage of I1(X) TI when θ = 1 and α=2. 

β n 

10 25 50 100 

0.95 0.9162 0.9337 0.9416 0.9458 

  0.975 0.9500 0.9640 0.9690 09725 

 

Observation: It is observed from Table that for small sample size, n; I1(X)  underestimates  coverage, 

while for large  n;  coverage converges to  the desired value.  
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