STUDY OF MEMBERS OF DIFFERENT TRIBES OF FAMILY ASTERACEAE WITH REFERENCE TO STEM ANATOMY

P. K. Tete* and A. A. Fulzele
Shri Mathuradas Mohota College of Science, Nagpur - 440009 (M.S.)
*Corresponding Author: pawantete10@gmail.com

Communicated : 01.01.19
Revision : $11.01 .2020 \&$
18.01 .2020
Accepted : 28.01.2020

Published: 30.01.2020
Accepted : 28.01.2020
30.01.2020

Abstract

: Asteraceae is one of the widest family in Angiosperms having significant economic values, such as production of oil, ornamental plant, secondary metabolites, etc. In family Asteraceae about 1,535 genera distributed in 13 tribes. The current work aims at studying the differences in stem anatomy and floral characters of these tribes. In the present study sixteen species belonging to ten tribes were documented, The Heliantheae, one of the tribes' in this family is more dominant in Nagpur region, and in the present study six genera were recorded. This was followed by two genera in Cichorieae, and one genus each in the tribes Anthemideae, Astereae, Echinopeae, Eupatorieae, Gnaphalieae, Inuleae, Mutisieae and Vernonieae. Detailed study of the arrangement of vascular bundles and type of trichomes found on the stem was studied using free hand-sections. For the floral characters, ray floret, disk floret, shape of receptacle and the type of capitulum inflorescence was studied. An attempt was made for the development of a taxonomical key based on stem anatomical features highlighting the differences in the tribes. Microphotography of the floral components and anatomical study of the stem of these plants, revealed characters which are uutilized for creating a key for various tribes based on morphology as well as anatomical characters.

Key words: - Asteraceae, tribes, Heliantheae, stem anatomy, capitulum, key

INTRODUCTION:

The family Asteraceae also called the Compositae has been considered to be a unified evolutionary by all botanists. This family is one of the largest of the eudicots with over 32,000 species and at least 1,900 genera in 13 subfamilies (The Plant List, 2013). Members of the family Asteraceae can be found all over the world. These plants have evolved many adaptations to withstand harsh environment as well as more moderate climates. Many plants in the family Asteraceae are economically important as weed, ornamentals, medicinal and green vegetables are poisonous plants. Commercially the flowers of this family are very famous of their colorful florets. A wide range of horticultural species are grown in home garden or national garden plots. The Asteraceae feature extensively in gardens distributed throughout the world as ornamental. A wide range of horticultural species is grown both
under grass, and as herbaceous garden plants throughout the world. About half the species of Asteraceae are native to the Old World and half to the New World.
TRIBE is a taxonomic group that is a subdivision of a subfamily
The Asteraceae consist of 1528 genera and 22,750 species. The Asteraceae has recently been classified into at least ten subfamilies and members of the family have a worldwide distributed. (Ngu Wah Win, 2018)
This family includes tribes - Vernonieae, Eupatorieae, Asteroideae, Inuloideae, Helianthoideae, Antemideae, Senecioideae, Calendulaceae, Cynaroideae, Mutisiaceae, and Cichoriaceae. (Hooker, 1881) As per Cronquist (1981), in Asteraceae 13 tribes found. In bestknown family of flowering plants, the Asteraceae may be organized into 3 subfamilies: (1) the

Brandesiodieae with a single tribe, (2) the Cichorioideae with 6 tribes, and (3) the Asteroideae with 7 tribes. (Heywood et al.1978). Family of Asteraceae is common at temperate region, In India, Asteraceae is dominant towards Himalayan regions, nearly 955 taxa are found, (72.67%) with about 202 taxa of which are endemic to the India. The chef center of diversity of the Indian Asteraceae is due to conducive temperature and altitudes, habitats distributed from the cold deserts of Ladakh to forests of north-east India.

The works were carried out in Nagpur region were detailed study of the arrangement of vascular bundles and type of trichomes found on the stem was studied by taking free hand-sections. For the floral characters, ray floret, disk floret, shape of receptacle and the type of capitulum inflorescence was studied. An attempt was made for the development of a key based on stem anatomical features highlighting the differences in the tribes. Microphotography of the floral components and anatomical study of the stem of these plants, revealed characters which can be utilized for creating a key for various tribes based on morphology as well as anatomical characters.

MATERIAL \& METHODS

The species belonging to different tribes of Asteraceae were collected from Nagpur region. Field notes were made of precise location and of habitat of that plants type. They were record and take photographs in the field. After the collection, the vegetative and floral parts of fresh specimens were studied for taxonomic characters; some of collected specimens were dried and pressed to prepared herbarium sheet.
The collected specimens were preserving for further anatomical study. For anatomical study, the fresh and preserve specimens were examining by preparing free-hand section for microscopic study of stem. These sections were stained with
double staining technique and observed under microscope for anatomical characters.

On the basis of anatomical character bracketed key prepared.
Observations and Results
The works were carried out in Nagpur region were detailed study of the arrangement of vascular bundles and type of trichomes found on the stem was studied for the following tribes given in the table no. 1. \& table No. 2 shows important character identified along with anatomical feature in front of respective names of the plant studied.

RESULT \& DISCUSSION

The works were carried out in Nagpur region were detailed study of the arrangement of vascular bundles and type of trichomes found on the stem was studied for the following tribes given in the table no. 1. \& table No. 2 shows important character identified along with anatomical feature in front of respective names of the plant studied.

3.1. KEY TO ANATOMICAL CHARECTERS OF TRIBES OF DIFFERENT GANERA FROM ASTERACEAE

1. Secretary canal

.Cosmos sulphureus Tribe
 HELIANTHEAE

1. Secretary canal absent

2. Epidermis with Bitrunket trichomes
Vernonia cineria Tribe

VERNONIEAE

2. Epidermis with other trichomes
3. Long blunt trichome
.Gerbera jamesonii Tribe
MUTISIEAE
4. Long pointed trichome
\qquad
5. Epidermis spiny
.Ageratum conyzoides Tribe EUPATORIEAE
6. Epidermis non spiny

(5)

5. Biseriate multicellular trichome

Echinops echinatus Tribe ECHINOPEAE
5. Uniseriate multicellular trichome
6. Secretary trichome
.Blumea lacera Tribe

INULEAE

6. Non secretary trichome

.... (7)

7. Small and big vascular bundle alternate

Solidago canadensis Tribe
ASTEREAE
7. Same sized vascular bundle
8. Pericycle oval rounded

Launaea procumbens Tribe CICHORIEAE
8. Pericycle non oval
..... (9)
9. Secondary growth shown

Chrysanthemum sp Tribe

ANTHEMIDEAE

9. Many seriate vessels
...................Gnomophilum palustre Tribe GNAPHALIEAE
3.2. KEY TO ANATOMICAL CHARACTERS DIFFENT GENERA
10. Stem cylindrical.
11. Stem angular.
12. Cortex with secretory canal

Cosmos sulphureus
2. Cortex without secretory canal. (3)
3. Epidermis with blunt trichome \qquad
Parthenium hysterophorus
3. Epidermis with trunket trichome \qquad
Vernonia cineria
3. Epidermis without trichome.

Sonchus oleraceus
4. Spiny cuticle..........................Ageratum conyzoides
4. No spiny cuticle.
5. Bisereate multicellular trichome.

Echinops echinatus
5. Unisereate multicellular trichome and others........ (6)
6.

Arenchymatous
cortex. .Eclipta alba
6. Non Arenchymatous cortex.
(7)
7. Secretory trichome.
7. Non secretory trichome.
8. Small and big vascular bundle alternate.

Solidago canadensis
8. Small and big vascular bundle alternate with conical
V.B. \qquad
Gerbera jamesonii
8. Same size V. B. Blumea lacera
9. Pericycle hemispherical, sub rounded. \qquad
Xanthium indicum
9. Pericycle non hemispherical. \qquad (10)
10. Pericycle oval or rounded.

Launaea procumbens

10. Pericycle non oval or non rounded \qquad (11)
11. Long elongated tapering trichome \qquad (12)
12. Non elongated tapering trichome \qquad (13)
13. Secondary growth \qquad
Chrysanthemum sp.
14. Non secondary growth

Synedrella nodiflora
13. Many seriate vessels

Gnomophilum palustre
13. Big vessels

Tridex procumbens

Conclusion

Morphological details of 16 species carried out belonging to 10 tribes. Tribe HELIANTHEAE is common in Nagpur region, 6 species were collected and described.

On the bases of anatomical characters different tribes can be distinguish, for example, Anatomical characters of tribes and genera is given in the Table No. 3. Thus anatomical features can be included for identification of different tribes in Asteraceae. Looking to the diversity of family Asteraceae more detailed work is required.

ACKNOWLEDGEMENT: - We are very grateful to the principal of Shri Mathuradas Mohota College of Science, Nagpur for providing necessary facilities required for work.

REFERENCES

Cronquist, A. (1981). An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.

Funk V. A; Susanna A; T. Stuessy and Robinson. H. E. (2009). Classification of Compositae. Book. Systematic, Evolution and Biogeography of Compositae. Pub. IAPT, Vienna. Edt. V. A. Funk, A. Susanna, T. Stuessy. R. Bayer, pp 171-189.

Heywood V. H. (1978) Flora Europaea: Notulae Systematicae ad Floram Europaeama spectantes.

Kandemir A; Makbul S, Turkmen Z, Yilmaz M. (2006). Morphological, Anatomical and Palynological Investigation on Sonchus erzincanicus Matthews (Asteraceae) Turkish Journal of Botany 30 (5): 405411.

Mitra Sunit, S. K. Mukherjee. (2017) Plant biodiversity: monitoring, assessment and conservation. Department of Botany, Ranaghat College, Nadia - 741 201, West Bengal, India. DOI10.1079/9781780646947.0036

Ngu Wah Win. (2016). Anatomical study on Tridax procumbens L . from Tribe Heliantheae. http://www.academia.edu p. 1-26

Rahman. A.H.M. M.. (2008). Taxonomic Studies on the Family Asteraceae (Compositae) of the Rajshahi Division.

Research Journal of Agriculture and Biological Sciences, 4(2): 134-140.

Rob H. and Brenandendron D (2017). Anatomical Studies on the Stem and Leaf of Vernonia amygdalina Del, Cyanthillium cinereum (L.) Journal of Applied Life Sciences International 15(4): 1-8

Roque Nádia, David J. Keil and Alfonso Susanna. (). Apendix A: Illustrated glossary of Compositae, www.alcb.ibio.ufba.br

Shi, Z. et al. [total: 33 co-authors]. (2011). Asteraceae (Compositae) [family introduction,glossary, systematic list, and key to tribes]. Wu, Z. Y., Raven, P. H. \& Hong, D. Y., eds., Flora of China Volume 20-21 (Asteraceae). Science Press (Beijing) \& Missouri Botanical Garden Press (St. Louis).
http://efloraindia.nic.in/efloraindia/searchTaxo n.action (Botanical survey of India/ Flora Of India)

The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org (accessed 1st January).

Table No. 1. Number of tribes and genus of family Asteraceae described from Nagpur region		
Sr. No.	Name of plant genera studied	Name of tribes studied
1	Gerbera jamesonii	MUTISIEAE
2	Echinops echinatus	ECHINOPEAE
3	Launaea procumbens	CICHORIEAE
4	Sonchus oleraceus	CICHORIEAE
5	Vernonia cineria	VERNONIEAE
6	Solidago canadensis	ASTEREAE
7	Chrysanthemum sp.	ANTHEMIDEAE
8	Gnomophilum palustre	GNAPHALIEAE
9	Blumea lacera	INULEAE
10	Cosmos sulphureus	HELIANTHEAE
11	Synedrella nodiflora	HELIANTHEAE
12	Tridex procumbens	HELIANTHEAE
13	Xanthium indicum	HELIANTHEAE
14	Eclipta alba	HELIANTHEAE
15	Parthenium hysterophorus	HELIANTHEAE
16	Ageratum conyzoides	EUPATORIEAE

Table No. 2. Special characters of plant with their photographs		
Name of Tribe\& Plant	Characters	Photos
Gerbera aumesonii MUTISIEAE	Long blunt trichome. Alternet vascular bundle. Vascular bundle conical	

Echinops echinatus ECHINOPEAE	Two type of trichome Long tapering \& Biseriate multicellular trichome.	
Launaea procumbens CICHORIEAE	Small and big vascular bundle alternate. Pericycle is oval in shaped.	
Sonchus oleraceus CICHORIEAE	Shows angular margin. Vessels in a column.	
Vernonia cineria VERNONIEAE	Hairy epidermis Bitrunket trichome	
Solidago canadensis ASTEREAE	Vascular bundle big \& small alternate Long uniseriate glandular hair.	

$\begin{aligned} & \text { Chrysanthemum } \\ & \text { sp. } \\ & \text { ANTHEMIDEA } \\ & E \end{aligned}$	Secondary growth Pointed trichome Pericycle in patches	
Gnomophilum palustre GNAPHALIEAE	Many hairs on epidermis Many uniseriate vessels	
Blumea lacera INULEAE	Same size vascular bundle Scattered vessels along periphery	
Cosmos sulphureus HELIANTHEAE	Secretory canal Triangular vascular bundle	
Synedrella nodiflora HELIANTHEAE	Small pointed trichome Phloem move towards in side	
Tridex procumbens HELIANTHEAE	Small Pericycle Big vessels	

Xanthium indicum HELIANTHEAE	Hemispherical Pericycle Uniseriate multicellular trichome	
Eclipta alba HELIANTHEAE	Arenchymatous cortex Spiny trichome	
Parthenium hysterophorus HELIANTHEAE	Pericycle continues Blunt trichome	
Ageratum conyzoides EUPATORIEAE	Alternet vascular bundle Round Pericycle	

Fig. 1. Gerbera jamesonii A. Inflorescence, B.L.S. of Inflorescence, C. Rey \& Disk floret, D-F. Part showing Big \&

Fig.2. Echinops echinatus A. Habit, B. Inflorescence, C.L.S. of

Inflorescence, D. floret, E. Cross section of stem, F-G. Trichome

[^0]

Fig.3. Launaea procumbens
A.Habit,B.Infloresecence,C.floret,D. Cross section of stem, $E \& F$. Vascular bundle And arrangement of Pericycle

Fig.5. Vernonia cineria A.Habit,B.Infloresecence, C.floret,D. Cross section of stem, E. Epidermis with minute hairs, F. Bitrunket Trichome, G. Vascular bundle with Pericycle, H. Trichome with Vascular bundle

Fig.4. Sonchus oleraceus A.Habit,B.Infloresecence, C.floret,D. Cross section of stem, $E \& F$. Vascular bundle And arrangement of Pericycle

Fig.6. Solidago canadensis A.Habit,B.Infloresecence, C.floret,D. Cross section of stem, E. Structure of Vascular bundle, F .part showing arrangement of vascular bundle, G. Glandular Trichome

Fig.9. Blumea lacera
A. Habit, B.L.S. of Inflorescence, C. floret, D. Cross section of stem, E. Arrangement of vascular bundles, F. Structure of Glandular trichome, G. Tapering trichome

Fig.11. Synedrella nodiflora
A. Habit, B. Inflorescence, C .floret, D. Cross section of stem, E. Vascular bundles, F. Small trichome with cortex and Pericycle, G. Structure of Pericycle

Fig.10. Cosmos sulphureus A.Habit,B.Infloresecence, C.floret,D. Cross section of stem, E. Structure of vascular bundle, F. Arrangement of vascular bundles, G. Cortex showing canal

Fig. 12. Tridex procumbens
A. Habit, B. Inflorescence, C, floret, D. Cross section of stem, E. Cortex \& vascular structure, F. Structure of Pericycle and xylem vessels, G. Arrangement of vascular bundles.

Fig. 13. Xanthium indicum
A. Habit, B. Male Inflorescence, C. Female floret, D. Cross section of stem, E. Arrangement of vascular, F. Trichome, G. Structure of vascular bundle

Fig. 15. Parthenium hysterophorus
A. Habit, B. Inflorescence, C, floret, D. Cross section of stem, E. Cortex \& vascular structure, F. Structure of Trichome, G. Vascular Bundle

Fig.14. Eclipta alba
A. Habit, B. L.S. of Inflorescence, C, Ray \& Disk floret, D. Cross section of stem, E. Cortex with Arenchymatous cell and trichome structure, F. Structure of trichome, G. Vascular bundles.

Fig.16. Ageratum conyzoides
A. Habit, B. Inflorescence, C, floret, D. Cross section of stem, E. Cortex \& vascular structure, F. Structure of multilayered epidermis

[^0]: Small Vascular bundle, G. Trichome

