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Abstract:  

A popular data analysis technique used in almost all subjects including Biosciences and Agriculture  is 

regression. In regression analysis a researcher has to face with a data on two or more variables and the interest lies 

in modeling the re lationship between them. Mostly, this could be  done by using least squares (LS) me thod  or 

maximum likelihood estimator (MLE) method. Regression model is fitted under certain assumptions like , 

independence of predictors; e rror variable  follows normal distribution with constant variance etc. A real life data may 

not satisfy some  assumptions and these  methods give  misleading results. In this article, we use support vector 

machine for prediction of future values of response variable  and the  performance of diffe rent estimation methods is 

evaluated through real data.  

Keywords: Least squares method; Multiple linear regression; M-estimator; Support vector regression; Prediction 

risk. 

Introduction 

The regression is the most extensively 

used data analysis technique  in almost all fie lds 

including Biosciences, Agriculture and 

Technology. Mitchell-Olds and Shaw (1987), Li e t 

al. (2014) have applied regression in Biological 

sciences. Overmars and Verburg (2006), Jirapure 

and Deshkar (2016) have  used regression in 

agriculture. In these  sciences, usually a 

researcher has to deal with a data on two or more 

variables and the interest lies in modeling the 

relationship between them. A researcher prefers 

to use  multiple  linear regression first. A multiple 

linear regression model is defined as � =  �ββββ + �        (1.1)  
where  � is known as response variable and is  a 
vector of � observations, � is a matrix of order (� ×  
) of observations on  
 − 1 predictors 
(regressors) �� ,��, … ,����  with 1’s in the firs t 
column, ββββ  =  (��, ��, … , �� �� )� is a vector of 

unknown regression parameters, and  � is a 
vector of errors. The  assumptions on the model 

in (1.1) are  �(�)  =  �, Cov(�) =  ��I and   � ~  ! (�,   ��I), where , I is the  identity matrix of 

order � × � and �� is error variance .  
Important steps in regression are to obtain the 

estimates of regression parameters, to choose an 

appropriate  model for the  given data and to 

predict the future values of response variable  as 

accurate as possible. Least squares (LS) and 

maximum like lihood estimator (MLE) methods 

are generally used for estimation of parameters 

in linear regression. The  performance of these 

methods is exce llent if above assumptions on 

errors are  true. The performance of least squares 

method is not satisfactory when the  data 

contains an influential observation and/or the 

distribution of error variable is not normal. To  

 

 

tackle these  situations Huber’s M-estimator and 

rank-based estimator are  used.  

An alternative  to these  methods is to use a data 

dependent method such as Support Vector 

Machine  (SVM). Boser et al. (1992) have 

introduced SVM in COLT. Vapnik et al. (1997) 

have  extended SVM to regression and called it as 

Support Vector Regression (SVR). In this article, 

we use SVM for prediction of future values of 

response variable and the  performance  of 

different methods of parameter estimation is 

evaluated through real data.  

The article  is organized as: Section 2 gives a brief 

introduction to materials and some methods 

used for parameter estimation in linear 

regression. In section 3, Results of regression 

analysis and comparison of performance  of 

different methods through real data is reported. 

Finally, Section 4 gives discussion. 

2 Materials and Methods  

In real life  data, some of the  assumptions 

mentioned in Section 1 are not satisfied, and we 

come across some of the problems like  outlier 

observations in the  data, non-normal 

distribution of error variable , dependency in the  

predictor variables, non-linearity etc. A method 

to be  used for analysis of data depends on the 

problems present in the data. Below we discuss 

in brie f two methods for parameter estimation 

and one for function estimation. 

2.1 Least squares method  

The method of least squares was discovered by 

Legendre A. M. in France around 1805 (see 

Birkes and Dodge, 1993). The  LS estimator of ββββ   

is given by  "# $% = (&′&)��&��.                  (2.1) 

The vector of predicted values �#  of the response 
variable � based on "# $% is  



I J R B A T, Vol. V, Special Issue (3), Nov-2017      ISSN 2347 – 517X 

 

GOPAL KRISHNA GOKHALE COLLEGE, KOLHAPUR 233 ICIRST-2017 

 

         �# = &"#$%                   (2.2) 

The values of the  residual measure  the deviation 

between the observed data and the predicted 

values. The   ()*  residual denoted by  +, is defined 
as 

       +, = -, − -., ,  ( =  1, 2, . . , �.          (2.3) 

where  -,  denote  the ()*  observation on the 

response variable and -.,  is the  corresponding 
predicted value .  

For more details about LS estimator and 

residuals one may refer Montgomery e t al. (2006). 

The performance of LS estimator and inference 

based on it is excellent for clean data which 

satisfies  the assumptions mentioned in Section 

1. 

 

 

2.2 M- estimator method 

Huber in 1964 has proposed a robust loss function defined as;                

    12 =  3 (45 )6
�    ,                 for |+,|  ≤ ;

;|+,| − <6
�   ,              otherwise                                        (2.4) 

An estimator "C of " which minimizes a function D of residuals that is  
                     min" ∑ D(+,)!,H�                                                          (2.5) 

for some function  D(·) is called as M–estimator.  

An iterative  rewe ighted least squares method is used to obtain the  M–estimator of unknown regression 

parameters and it is given by 

             "C = (�′J�)���′JK                                                (2.6) 

where  J = diag(L� , L� ,… , L! ), is the weight matrix.  Huber’s M-estimator is designed to perform well 

when error distribution is non normal but it is close to normal (Birkes and Dodge, 1993, pp. 111). The 

vector of predicted values �# of the response variable � based on the M–estimator of " is  
          �# = �"C                                                                  (2.7) 

We have taken the  value of bending point constant  ; =1.345 for calculating M- estimator, 

2.3 Support vector regression 

In SVR, based on a data set (M, , -, ), ( =  1, 2, . . . ,�  of input vectors  M, ∈ O��� (()*  row of design matrix X )  

and associated targets -, ∈ O, an unknown regression function P(M,) can be  obtained in the form, 

                -, = P(MQ) +  R, ,  ( = 1, 2, … ,�.                                       (2.8) 

where , R, is an error term. Using the ε -insensitive  loss function (Vapnik, 1995)    1ST -, ,P(MQ)U =  VWX . { |P(MQ) – -,| − ε , 0 }                                   (2.9) 

the regression problem can be written as convex optimization problem as:         

         Minimize      
�� ‖_‖�                                                                (2.10) 

        Subject to:    -,  – (MQ_ + ` )  ≤  ε , ( =  1, 2, … , �.                         (2.11) 
                             (MQ_ + ` ) − -,  ≤  ε , ( =  1, 2,… , �.                       (2.12) 
where , ε > 0 is a pre-de fined constant. Using Langaranges method of multipliers and dual theory the  

above  problem can be solved and the  we ight vector is given by 

            _� = ∑ (a, − a,∗)!cde,H� M,                                                         (2.13) 

And the  regression function is given by, P(M) = ∑ (a, − a,∗)!cde,H� M,M′ + `                                                 (2.14)  

where   nnsv – number of support vectors and α, , α,∗  for ( =  1, 2, … , � are Lagrange ’s multipliers. For 

computing  P(M) the value  of  _  does not need to be  calculated explicitly. The  value of bias ` is given 
by (Gunn, 1998), 

                   ` = − �� (M4 + Mf)_                                                   (2.15)  

where  M4 and Mf are the support vectors (i.e. any input vector which has nonzero value  of e ither a,  or a,∗  
respectively). For details refer Desai and Kashid (2015).   

To perform SVR, we  have  taken C =  VWX (|VR –  3h.i. |, |VR +  3h. i. |) suggested by Desai and Kashid 

(2015) and ε =  C ∗ 10–6. 

Comparison of performance of methods  

To compare  the  performance of various methods, we obtain the  mean absolute percentage error (MAPE) 

de fined as, 

    MAPE =  ∑ [( |-,– -kl | -, ) ∗ 100]⁄ �⁄  !,H�                                            (2.16) 
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Results 

In this section, we  do regression analysis 

of two real data sets, one from Biology and 

another from Agriculture. We compare the 

performance of above methods using analysis of 

these data se ts.  

3.1 Blood fat contents data (Kleinbaum and 

Kupper, 1978):  

This data contains 25 observations on 

response variable  blood fat content (o), two 

predictor variables we ight in kilograms (��) and 
age in years (�� ). We apply all three methods 

discussed in Section 2. Obtained predicted 

values (assuming the same data as test data) and 

MAPE values. To introduce outlier we changed 

the observation -p = 3850 instead of original 
value 385. The  values of regression parameters 

and MAPE for original and outlier data are shown 

in the Table  1. Using SVR we get regression 

function, but for comparison purpose we report 

regression parameters. 

From Table 1, we observe  that there  is 

small variation in values of regression 

parameters, MAPE values and the  performance of 

three  methods is same for actual data. But for 

outlier data there  is large variation in regression 

parameters and MAPE values. The performance 

of LS is poor (MAPE=54.64), that of SVR is  good 

(MAPE=25.934) and that of M-est. method is 

better (MAPE=13.886) for blood fat contents data. 

3.2 Oil extraction from peanuts data 

(Montgomery, 2006, pp 574):  

This data contains 16 observations on 

response variable total oil yield (o) and five  
predictor variables, ��- CO2 pressure (bar), ��- 
CO2 temperature (in degrees Ce lsius), �q-peanut 
moisture  (percent by we ight), �r- CO2 flow rate  

(L/min) and �s- peanut particle size (mm). All the  

predictors are categorical taking either of two 

values. We coded all five predictors in 0 and 1 

separate ly.  We apply all three  methods to the  

coded predictors and response. Obtained 

predicted values (assuming the same data as test 

data) and MAPE values using every method. To 

introduce outlie r we changed the observation  -t  
= 350 instead of original value = 71. The  values 

of regression parameters and MAPE for original 

and outlier data are shown in the Table  2. 

 

Table 1: Parameters and MAPE values for Blood fat data using different methods 

Data Actual data Outlier data 

Me thod LS  M-Est. SVR LS  M-Est. SVR 

��  77.983 74.974 46.629 105.650 74.974 60.687 ��  0.417 0.425 0.785 4.293 0.425 4.791 ��  5.217 5.228 5.373 1.248 5.228 1.460 

MAPE 11.330 11.139 11.513 54.640 13.886 25.934 

  

Table 2: Regression parameters and MAPE values for Oil extraction data using diffe rent methods 

Data Actual data Outlier data 

Method LS  M-Est. SVR LS  M-Est. SVR 

�� 62.250 62.312 54.078 97.125 66.694 71.288 ��  7.500 7.438 9.580 –27.375 3.056 –19.856 �� 19.750 20.759 20.469 54.625 24.194 53.033 �q 1.250 1.313 4.024 36.125 5.694 36.588 �r  0.000 – 0.062 2.913 –34.875 –4.444 –26.523 �s –44.500 – 44.562 –36.642 –79.375 –48.944 –66.078 

MAPE 12.939 13.045 15.055 77.818 13.997 63.837 

For this  data also we observe the same type of results as reported in Section 3.1.  

 

Discussion 

In this article, we  discussed LS and M-

estimator methods for estimating parameters for 

linear regression and SVM for regression function 

approximation. There  are other methods also 

available in the lite rature for estimation. A 

researcher may find difficult to choose one  of 

them. Naturally, if one uses a method without 

knowing the  nature  of the data, then the  results 

may be misleading. It is important to understand 

the  nature  of the data and problems associated 

with it. Based on the problems in the  data, an 

appropriate method should be  chosen. For clean 

data the  performance of LS is excellent, for data 
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containing outliers M-estimator method 

performance better. When nature of data is 

unknown one may use  SVR, but it require  to 

choose the parameters of SVR properly.  
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