INTERNATIONAL JOURNAL OF RESEARCHES IN BIOSCIENCES, AGRICULTURE AND TECHNOLOGY © VISHWASHANTI MULTIPURPOSE SOCIETY (Global Peace Multipurpose Society) R. No. MH-659/13(N) www.vmsindia.org

SODIUM BISULFITE AS AN EFFICIENT AND ECONOMICAL CATALYST FOR ONE-POT SYNTHESIS OF 2, 4, 5 TRISUBTITUTED IMIDAZOLES FROM BENZIL, AMMONIUM ACETATE AND AROMATIC ALDEHYDES BY MICROWAVE IRRADIATION

Arvind Tapase

Department of Chemistry, Abasaheb Marathe Arts and New Commerce, Science College, Rajapur (Vikhare-Gothane) Dist. Ratnagiri 416 702 Email: arvindtapase@yahoo.com.

ABSTRACT:

Sodium Bisulfite is used as an efficient and economical catalyst for the synthesis of 2, 4, 5 triaryl – H imidazoles via condensation of benzil, ammonium acetate and aromatic aldehydes. The easy work-up, higher yields and shorter reaction time are the advantages of the method presented here.

Keywords: Triaryl imidazoles, benzil, ammonium acetate, aromatic aldehydes, Sodium Bisulfite, microwave irradiation.

INTRODUCTION:

Compounds with an imidazole ring system are biologically important due to their significant role in biochemical processes, as well as their use in synthetic chemistry¹. An imidazole ring system is one of the most important substructures found in large number of natural products and pharmacologically active compounds e.g. amino acid, histidine and hypnotic agent etomidate², and the proton pump inhibitor omeprazole³.

Trisubstituted imidazole derivatives are widely used as organic materials, such as to resist composition on textile,⁴ fluorescent whiteners textile.⁵ photographic materials.6,7 on electroluminescent materials^{8,9} and optical materials.^{10,11} Meantime, it was found that these compounds play roles in many kinds of activities.12,13 biological This versatile applicability highlights the importance of access to efficient synthetic routes to welldesigned and highly substituted imidazole derivatives. There are several methods for the synthesis of highly substituted imidazoles.¹⁴ A number of methods have been developed for the synthesis of 2,4,5-trisubstituted imidazoles. Which are generally synthesized by three component cyclocondensation of a 1,2diketone, a-hydroxy ketone with an aldehyde and ammonium acetate. It comprises the use of microwaves,15-18 ionic liquid,19 refluxing in acetic acid.²⁰⁻²² silica sulfuric acid.²³⁻²⁴ NiCl₂.6H₂O/Al₂O₃,²⁵ Yb(OTf)₃,²⁶ Yb(OPf)3,27 iodine,28 Zr(acac)₄,²⁹ InCl₃.3H₂O,³⁰ heteropolyacid,³¹ potassium aluminium sulfate (alum),³² ceric ammonium nitrate (CAN),³³⁻³⁴ polymer-supported ZnCl235 and L-proline.36 Moreover, they have also been prepared by the addition of a substituted amino alcohol to a thioamide and subsequent oxidation with PDC³⁷ or by the reaction of aryl nitriles and α , a-dilithio-arylnitromethanes³⁸ or by multistep synthesis.39,40 Khodaei and co-workers in 2007 described the synthesis of 2,4,5-trisubstituted imidazoles from 1,2-diketone or aaldehyde and ammonium hydroxyketone, heptamolybdate tetrahydrate in tetrabutylammonium iodide using catalytic amount of *p*-TSA.⁴¹ Despite their potential utility, most of these synthetic methods suffer from one or more serious drawbacks, such as and complex work-up laborious and purification, significant amounts of waste materials, strongly acidic conditions, occurrence of side reactions, low yields, high temperature, long reaction time and the use of expensive reagents. In present work promote simple and efficient methods for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives starting from 1,2-diketone and various aromatic aldehydes under microwave conditions in the presence of sodium bisulfite as the catalyst.

MATERIAL AND METHODS: Experimental

All compounds were characterized by modern spectral and elemental techniques. IR spectra

was recorded in KBr disc on a Perkin Elmer spectrometer for all products ¹H-NMR spectra was recorded on NMR spectrometer in CDCl₃ using chloroform as an internal standard. The mass spectra was recorded on GCMS-QP 2010 mass spectrometer. All the reagents used were of AR grade and were used without further purification. The reactions were carried out in microwave oven (CE2977 Samsung).

General procedure for synthesis of 2, 4, 5 triaryl imidazoles

A mixture of Benzil (10 mmol), ammonium acetate (20 mmol), aldehyde (10 mmol) and catalyst amount of Sodium Bisulfite (2 mmol) were dissolved in 10 ml ethanol in 50 ml beaker, stirred for few seconds and placed in microwave oven for irradiation at 600 Watt for 105 to 145 sec. till completion of reaction was monitored by TLC. The reaction mixture was cooled to room temperature and poured in 50 ml ice-water to get the solid precipitate. It was collected by filtration, washed with water and dried to give crude product. The crude product was purified by crystallisation using ethanol as a solvent to obtain solid product of 2,4,5 triaryl imidazole (1a to 1k).

1a: 2, 4, 5 triaryl-1H- imidazole (M.P. 277-278°C)

IR (KBr): 3061 (N - H), 1600 (C=C), 1488 (C=N), ¹H NMR (400Mz, CDCl₃): δ = 7.25 – 7.97 (m, 15H Ar - H), 8.15 (brs, NH), ES-MS: m/z = 297 (M+1).

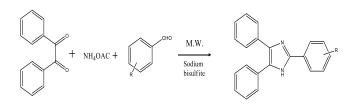
Anal. Cald for C₁₂H₁₆N₂ : C, 85.11; H, 5.44; N, 9.45 Found: C, 85.24; H,5.62; N,9.47

1b: 2(4- hydroxyphenyl) - 4, 5 - diphenyl -1H- imidazole (M. P. 267-268°C)

IR (KBr): 3215 (N - H), 1610 (C=C), 1580 (C=N), ¹H NMR (400Mz, CDCl₃): δ = 6.75 – 6.60 (m, 15H Ar - H), 9.55 (brs, NH), ES-MS: m/z = 312 (M+1).

Anal. Cald for $C_{21}H_{16}N_2O$: C, 80.75; H, 5.16; N, 8.97 Found: C, 80.78; H, 5.20; N, 8.99

1d: 2(4- Chlorophenyl) - 4, 5 - diphenyl - 1Himidazole (M. P. 261-262°C)


IR (KBr): 3455 (N - H), 1620 (C=C), 1582 (C=N), ¹H NMR (400Mz, CDCl₃): δ = 7.12 - 7.60 (m, 15H Ar - H), 7.355 (brs, NH), ES-MS: m/z = 330 (M+1).

Anal. Cald for $C_{21}H_{15}$ ClN₂ : C, 75.25; H, 4.56; N, 8.47 Found: C, 76.27; H, 4.58; N, 8.50

1e: 2(2- Chlorophenyl) - 4, 5 - diphenyl - 1H-imidazole (M. P. 195-196°C)

IR (KBr): 3075 (N - H), 1582 (C=C), 1492 (C=N), ¹H NMR (400Mz, CDCl₃): δ = 7.7 – 7.66 (m, 6H Ar - H), 7.68 - 7.70 (m, 2H), 7.8 – 8.2 (brs, NH), ES-MS: m/z = 330 (M+1). Anal. Cald for C₂₁H₁₅ ClN₂ : C, 76.25; H, 4.57; N, 8.47 Found: C, 76.26; H, 4.57; N, 8.52

Reaction

1, 2-diketone	Ammonium	Aromatic
2, 4, 5 - triaryl	imidazole	
	Acetate	aldehyde

RESULTS AND DISCUSSION:

In order to find optimum reaction conditions, condensation of benzil, benzaldehyde and ammonium acetate in the presence of sodium bisulfite as catalyst was done. The optimum molar ratio of benzil: benzaldehyde: ammonium acetate 1:2:1 and sodium bisulfite (2mol %) using ethanol solvent under microwave irradiation, 2(phenyl) 4, 5- diphenyl 1H - imidazole was obtained with 97 % yield at 600 Watt for 118 Results with benzaldehvdes Sec. were encouraging in a similar fashion, a variety of aromatic and heterocyclic aldehyde and benzil subjected to this microwave assisted procedure gives high yields of corresponding 2, 4, 5 triaryl imidazole. The results are summarized in Table-1. From the results mentioned in Table the aldehyde with electron-donating substituents favour the reaction and it was completed with shorter reaction time and high vields than the aldehyde with electron-withdrawing substituents. Also, the present method was found to be effective for hetero-aromatic aldehyde for the synthesis of 2-heteroaryl 4, 5 diphenyl 1Himidazole with better yield. To determine the role of sodium bisulfite the same reaction was carried out in the absence of catalyst at same conditions, which resulted in no product formation after 15 min. these result indicate that sodium bisulfite exhibits a high catalytic activity in this transformation. The procedure gives high vield products.

Comparison of results as mentioned in Table-1 with results obtained by some other reported procedures for synthesis of 2, 4, 5 triaryl imidazoles shows the promising feature of this method in terms of reaction rate and the yield of products as compared with reports in the literature.

CONCLUSION

In conclusion, we presented an efficient, mild and rapid approach for the synthesis of 2,4,5 – trisubstituted imidazoles via condensation of a representative 1,2-diketone (Benzil) with various aromatic aldehydes and ammonium acetate, by using sodium bisulfite as an efficient and inexpensive catalyst under microwave irradiation. Non-corrosiveness, safe, low waste, easy for separation, short time, high yields and environmentally benign are some of the advantages of this methodology.

ACKNOWLEDGEMENT

The author are thankful to the Principal, Abasaheb Marathe Arts and New Commerce, Science College, Rajapur Dist. Ratnagiri for providing necessary facilities.

REFERENCE:

- Philips A. P. White H. L and Rosen S. E., 1982, Appl E P 58890.
- Wanguier A., VanDen Broeck W. A. E., Verheyen J. L. and Janen P. A. 1978, J. Janen, Eur. J. Pharma., 47, 367.
- Tanigawara Y., Aoyama N., Kita T., Shirakawa K., Komada F., Kasuga M. and Okumura K., 1999, *Clin. Pharmacol R Ther.* **66**, 528.
- Watanabe T, Kinsho T and Hasegawa K 2004, US 234 884 A1.
- Siegrist A, Liechti P and Meyer H R 1973, *CH* 542 266.
- Etou K, Nanhei M and Tanaka S 1983, US 440 5705.
- Meji I and Fukui M 1995, JP 07 005 628 A2.
- Dodabalapur A, Strukelj M and Jordan R 1997, *EP* 763 965 A2.
- Mataka S and Hatta T 2005, WO 085 208 A1.
- Gostev F E, Kol'tsova L S, Petrukhin A N, Titov A A, Shiyonok A I and Zaichenko N L 2003, *J. Photochem. Photobiol. A. Chem.***156**, 15.
- Park S, Kwon O H and Kim S 2005, *J. Am. Chem.* Soc. **127**, 10070.
- Lee J C, Laydon J T and Mcdonnell P C 1994, *Nature* **372**, 739.
- Lombardino J G 1972 DE 2 155 558 [1973 US 3 772 441].
- Grimmet M R A R Katritzky and C W Rees 1984 in *Comprehensive heterocyclic chemistry* (eds) (London: Pergamon Press) vol. **5**, p. 374.
- Usyatinsky A Y and Khemelnitsky Y L 2000 *Tetrahedron* Lett. 41 5031.
- Wolkenberg S E, Wisnoski D D, Leister W H, Wang Y, Zhao Z and Lindsley C W 2004 Org. Lett. 6, 1453.

- Sparks R B and Combs A P 2004, *Org. Lett.* **6**,2473.
- Oskooie H A, Alimohammadi Z and Heravi M M 2006, *Heteroatom Chem.* **17**, 699.
- Khosropour A R 2008, Can. J. Chem. 86, 264.
- Wang J, Mason R, Derveer D V, Feng K and Bu X R 2003, J. Org. Chem. **68**, 5415.
- Sarshar S, Siev D and Mjalli M M 1996, Tetrahedron Lett. **37**, 835.
- Gallagher T F, Seibel G L, Kassis S and Laydon J T 1997, *Bioorg. Med. Chem.* **5**, 49.
- Shaabani A and Rahmati A 2006, *J. Mol. Catal. A: Chem.* **249**, 246.
- Shaabani A, Rahmati A, Farhangi E and Badri Z 2007, *Catal. Commun.* **8**,1149.
- Heravi M M, Bakhtiari K, Oskooje H A and Taheri S 2007, *J. Mol. Catal. A: Chem.* **263**, 279.
- Wang L, Wang Y, Tian H, Yao Y, Shao J and Liu B 2006, J. Fluorine. Chem. **127**, 1570.
- Shen M, Cai C and Yi W 2008, *J. Fluorine. Chem.* **129**,541.
- Kidwai M, Mothsra P, Bansal V, Somvanshi R K, Ethayathulla A S, Dey S and Singh T P 2007, J. Mol. Catal. A: Chem. 265, 177.
- Khosropour A R 2008, Ultrason. Sonochem. **15**, 659.
- Sharma S D, Hazarika P and Konwar D 2008, *Tetrahedron Lett.* **49**, 2216.
- Heravi M M, Sadjadi S, Oskooje H A, Hekmatshoar R and Bamoharram F F 2008, J. Chin. Chem. Soc. **55**, 1199.
- Mohamadi A A, Mivechi M and Kefayati H 2008, Monatsh. Chem. **139**, 935.
- Sangshetti J N, Kokare N D, Kotharkar S A and Shinde D B 2008, *J. Chem. Sci.* **120**, 463.
- Shaabani A, Maleki A and Behnam M 2009, Synth. Commun. **39**, 102.
- Wang L and Cai C 2009, Monatsh Chem. 140, 541.
- Sami S, Nandi G C, Singh P and Singh M S 2009, *Tetrahedron* **65**, 10155.
- Paone D Vand Shaw A W 2008, *Tetrahedron Lett.* **49,** 6155.
- Hayes J F, Mitchel M B and Wicks C 1994, *Heterocyclic* **38**, 575.
- Revesz L, Bonne F and Makavou P 1998, *Tetrahedron Lett.* **39**, 5171.
- Liverton N J, Butcher J W, Claiborne C F and Claremon D A 1999, J. Med. Chem. 42, 2180.
- Khodaei M M, Bahrami K and Kavianinia I 2007, J. Chin. Chem. Soc. **54**, 829.

Ent	Aldehyde	Watt	Time	Yield	M. P. (°C)	M. P. (°C)
ry		W	Sec.	(%)	Found	Reported
1a	Benzaldehyde	600	118	97	277-278	276-27714
1b	4-OH- Benzaldehyde	600	125	93	267-268	268-269 ³³
1c	4-CH ₃ - Benzaldehyde	600	130	95	231-233	231-23233
1d	4-Cl- Benzaldehyde	600	120	96	261-262	261-263 ³³
1e	2-Cl- Benzaldehyde	600	115	94	195-196	197-198 ³³
1f	4-N(CH3)2- Benzaldehyde	600	105	94	256-257	257-258 ³³
1g	4-NO ₂ - Benzaldehyde	600	128	91	234-236	236-238 ³³
1h	3,4-(OCH ₃) ₂ - Benzaldehyde	600	118	95	220-221	216-218 ³³
1i	4-OCH ₃ - Benzaldehyde	600	130	93	228-230	227-228 ³³
1j	4-Br- Benzaldehyde	600	145	94	264-265	261-263 ³³
1k	2-Furan	600	128	95	202-203	202-20326

Table – 1 - Physical data of the synthesized compounds