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ABSTRACT:  

In the context of fractional calculus, an analytical approach is suggested for resolving the coupled time-fractional order 

hygrothermoelastic equations for a non-simple cylinder. The transient response of an infinitely long cylinder subjected 

to ramp-type hygrothermal loadings at the surface is examined using the theory of fractional hygrothermoelasticity. 

Closed-form expressions for temperature and moisture have been derived in the Laplace domain using the Laplace 

transform method and introducing a new axillary function. Finally using the Riemann-sum approximation method, the 

solution is obtained in a time domain. The numerical findings of the transient response of the hygrothermoelastic 

fields are provided graphically to show the effect of the ramping time parameter inside the hygrothermal field. 

 

Keywords :- Hygrothermoelasticity, Non-Simple Nano-Cylinder, Laplace Transform, Ramp Type Heating, 

Fractional Order Differential Equation.  

 

INTRODUCTION : 

During initial manufacture, most buildings, 

particularly those made of porous composite 

materials, are frequently exposed to varying 

environmental factors including temperature 

and moisture. For a large range of materials, 

temperature and moisture are not independent 

of one another but rather are symbiotic. 

Determining how temperature and moisture 

affect these material’s and structure’s stresses 

and deformation is therefore of major interest. 

Many researchers have looked into the related 

hygrothermoelastic issues. 

A. Kilbas, H. M. Srivastava, and J. J. Trujillo [1] 

investigated sequential and non-sequential 

fractional order linear differential equations as 

well as systems of linear fractional differential 

equations connected to the Riemann-Liouville 

and Caputo derivatives. A. Chaves [2] proposed 

a diffusion equation for fractional derivatives 

that produces the Levy statistics. In his 

hygrothermomechanical bending analysis of 

variable-thickness thin rectangular plates, A.M. 

Zenkour clamps two of the plate's opposite edges 

while leaving the other two opposite edges 

unsupported [3]. In order to understand how the 

presence of two unique temperatures permits 

dependency on higher gradients, Chen, P.J., 

Gurtin, M.E., and Willams, W.O.  turn to a 

theory that incorporates mechanical effects [4]. 

In light of a fresh analysis of heat conduction 

with fractional order, H. M. Youssef developed a 

novel thermoelasticity theory model, and its 

uniqueness theorem has been confirmed [7]. The 

characterization of the quality factor resulting 

from the static prestress in the traditional 

Caputo and Caputo-Fabrizio fractional 

thermoelastic silicon microbeam is studied by 

H.M. Youssef, A.A. El-Bary, and E.A.N. Al-

Lehaibi [8]. Povstenko [10] uses the time-

fractional diffusion equation to describe the 

radial diffusion in a cylinder with radius R. In a 

multilayer plate subjected to hygrothermal 

loadings at the external surfaces, R. Chiba and 
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Y. Sugano studied the dispersion of transitory 

heat and moisture and the ensuing 

hygrothermal stress field [11]. By substituting a 

fractional derivative of order for the first-order 

time derivative in the classic diffusion equation, 

R. Gorenflo, F. Mainardi, D. Moretti, and P. 

Paradisi were able to derive the time fractional 

diffusion equation β ∈ (0, 1) [12]. R. Lifshitz and 

M.L. Roukes [13] highlight the significance of 

thermoelastic damping as a fundamental 

dissipation process for small-scale mechanical 

systems in light of current efforts to construct 

high-Q micrometer- and nanometer-scale 

electromechanical systems. In order to design a 

new model of two-temperature 

hygrothermoelastic diffusion theory for a non-

simple rigid material, Sonal Bhoyar, Vinod 

Varghese, and Lalsingh Khalsa researched the 

theoretical framework to combine both the 

traditional Fourier's and Fick's laws [14]. The 

Special Functions of Fractional Calculus were 

described by V. Kiryakova, and they were crucial 

in the development of control systems, 

sophisticated mathematical models of various 

physical, chemical, economic, management, and 

bioengineering phenomena, as well as solutions 

to fractional order (or multi-order) differential 

and integral equations. A linear theory of linked 

heat and moisture is used by W.J. Chang, T.C. 

Chen, and C.I. Weng [16] to investigate the 

transient reactions in an infinitely long annular 

cylinder subjected to hygrothermal loadings. 

Within the context of fractional calculus, X.Y. 

Zhang developed and investigated many models 

of hygrothermoelastic theory related to 

relaxation times or phase lag in [17–22]. These 

models were based on fraction diffusion wave 

theory. Y. Povstenko [24] evaluated the non-

axisymmetric solutions to the time-fractional 

diffusion-wave equation in an infinite cylinder. 

The time-fractional diffusion-wave equation is 

taken into account in an infinite cylinder for the 

case of three spatial variables r, ϕ and z.In a 

context of fractional Order Thermoelastic Waves, 

Youssef, Hamdy, Elsibai, Khaled, and El-

Bary investigated a mathematical model of 

cylindrical nanobeam [25].  

Formulation for Time fractional 

Hygrothermal Equation For Non Simple 

Medium: 

In this study, we first suggest a theory of time 

fractional hygro-thermoelasticity theory for a 

non-simple medium. For the sake of simplicity, 

it is assumed that heat and moisture are 

coupled and that both affect the medium's 

elastic stresses. Conversely, elastic deformation 

has no impact on them. As a result, the 

interaction between heat and moisture can be 

represented as the diffusion of water vapour 

through a material's pores, which are partially 

filled with solids and partially with air. In 

general, according to [16], the amount of 

moisture absorbed by a unit mass of a solid, M, 

can be assumed to depend linearly on the 

concentration of water vapour contained in a 

unit volume of void, C, and the temperature, T, 

and change in moisture and temperature is 

confined within  a small range, the amount of 

moisture absorbed by a unit mass of a solid is 

given by, 

constantM C T                                                

(1) 

where χ and ω are material constants. Then the 

amount of moisture contained in the composite 

per unit mass of solid, m, can be expressed as 

 'C
m M




 

                                                            

(2) 

where '  is the volume fraction of the voids, 

and ρ is the density of the material, 

 1 ' s    , s  being the density of the solid 

without voids. Due to the principles of energy 

conservation and mass conservation, we can 

write 
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h p
M T

q c
t t

 
 

  
 

                                               

(3) 

'
m

M C
q

t t





 
   

 
                                                   

(4) 

where   is the amount of heat released from 

per unit mass of moisture and pc  is the specific 

heat at constant pressure.  

 The assumption is made in accordance 

with [25] that heat and moisture obey time-

fractional Fourier and Fick's laws, where the 

matter flux has the power of a time-nonlocal 

kernel characterising "long-tale" memory. Thus, 

the heat flux vector qh   and moisture flux vector 

qm  take the following forms, respectively, 

 

 

 

1

0

2

0

( ) , 0 1
( )

( ) , 1 2
( 1)

t
h

h t
h

D
t T d

t
q t

D
t T d





   


   






 
    
 

 

      

             

(5) 

 

 

 

1

0

2

0

( ) , 0 1
( )

( ) , 1 2
( 1)

t
m

m t

D
t C d

t
q t

Dm
t C d





   


   






 
    
 

 

      

            

(6) 

in which hq  and mq  represent the coefficients 

of heat conduction and moisture diffusion, α, β 

are the fractional orders, respectively, and  

(*)  is the Gamma function. 

Substituting Eqs. (5) and (6) into Eqs.(3) and (4), 

we get 

2
h p

T M
D T c

t t

 

 
 

 
  

 

0 2                              

(7) 

2

'
m

C M
D C

t t

 

 





 
  

 
0 2                                     

(8) 

in which ( / )t   and ( / )t    is the 

Caputo fractional derivatives, ,   represents 

the fractional order of a Caputo fractional 

derivative with respect to time t, (*)  is the 

Gamma function, and Caputo fractional 

derivative is written as[3]  

1 ( )1( ) , 1
( )( ) 0

( )
,

nt d fnt d n n
nnd f t d

ndt d f
n

ndt

  
  







     

 
 





            

(8) 

The quantity M in Eqs. (7) and (8) can be 

eliminated using Eq. (1). Substitute value of M 

in Eqs. (7) and (8), we get system of linearly 

coupled partial differential equation of 

moisture(C) and temperature(T)  as follow, 

2 T C
T

t t

 

 


 
  

 
D   , 0 2                                

(9) 

2 C T
D C

t t

 

 


 
  

 

, 0 2                               

(10) 

Where 

 
h

p

D

c 

 

D
, 

pc









, '

'

mD
D



 




,

'




 



             (11) 

       The two-temperature model is a non-

classical thermoelasticity theory of elastic solids 

that is currently being introduced. In this 

context [4] suggested classifying real materials 

into simple and non-simple materials by taking 

into account two temperatures, conductive and 

thermodynamic and they have shown that the 

two temperatures are related by,  

2 , 0T b T b     in which   is the 

thermodynamic temperature, T  is the 

conductive temperature, and b  is the 

temperature discrepancy factor. Thus the 

thermodynamics and conductive temperatures 

are not identical for non-simple materials while 

they are identical for simple materials.  

 The material parameter b is a crucial 

distinction between the two-temperature 

thermoelasticity theory and the classical theory. 
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Specifically, in the limit as 0,b  T   which 

gives rise to the classical theory, i.e. one-

temperature generalized thermoelasticity theory. 

Therefore, for a non-simple medium, Eq. (9) can 

be written as, 

21
T C

T
t

b

t t

 

 


 
 

 
  

  
D 0 2                         

(12) 

Formulation of the problem 

The cylindrical coordinates system ( , , )r z is 

utilised to examine the time-fractional order 

hygrothermoelastic response of a cylindrical 

ramp-type heating structure with circular cross 

sections that is exposed to axisymmetric 

hygrothermal loadings at the surface, as 

illustrated in Figure 1. 

Take a look at the tiny flexural deflections of a 

thin elastic cylinder with z axes specified along 

the longitudinal with length 

( )/ 2 / 2z h z h   , width radius 

(0 )r r a   and (0 )2    . When the 

beam is in equilibrium, it is unstretched, 

unstrained and has no damping mechanism, 

and the temperature is 0T  everywhere.[26]  

As previously stated, we simply take into 

account the hygrothermal effect on elastic 

stresses and deformation here. However, as a 

result of an elastic field, temperature (T) and 

moisture (C) do not vary. Due to the asymmetry 

of this problem, the coupled partial differential 

equation for a non-simple medium is 

represented by Eq. (10) and (12 ) subjected to 

the initial and boundary conditions  

   ,0 0  and ,0 0 0 1T r C r r   
                       

(13) 

   ,0 ,0
0 and 0, for 0 1,  if 1< , 2

T r C r
r

t t

 

 
 

 
    

           

(14) 1
0

00

1 0

for 0 ,
, 0,

for ,
z z h

T
t t t

tT T

C t t
 


 

 
 

                                 

(15) 

1
0

00

1 0

for 0 ,
, 0,

for ,
z z a

C
t t t

tC C

C t t
 


 

 
 

                                 

(16) 

where 0t  is a ramp-type parameter, and 1T  and 

1C  are both fixed constants and 

2

2
2 2

2

1

r rr z


  
 

 

 is the Laplacian operator. 

Solution of the problem   

Applying the Laplace transform to Eq. (10)- (16) 

defined by the formula   

0

( ) [ ( )] ( ) , 0stf s L f t f t e dt s


                                         

(17) 

where s  is the Laplace parameter                     

Then Eq. (10) - (16) takes form in Laplace 

domain as, 

 21
b

s T s T C 


 
    

 
D                                       

(18) 

 2D C s C T                                                

(19) 

0
1

120
0

1
( ), 0

t s

x x a

e
G s

t s


 



 

 
   

 
 

                              

(20) 

0
1

220
0

1
( ), 0

t s

x x a

e
G s

t s


 



 

 
   

 
 

                            

(21) 

Assume that temperature and moisture are 

expressible in terms of an auxillary function F 

as follows, 

 2T D s F                                                      

(22) 

C s F                                                          

(23) 

If the newly introduced unknown function F 

satisfies the single equation as given below, then 

Eqs. (18) and (19) are automatically satisfied. 
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 
1

4 21 1 0
bs bLs

DL F Ds Ls F s F


   
 




  
               

     (24) 

Note that there are no thermal gradients in the 

r direction and that thermal gradients in the 

plane of the cross section along the z direction 

are significantly larger than gradients along the 

beam axis we neglect the terms 
2 2/ r  and 

/ r  and replace 
2  by 

2 2/ z  [13]. Then 

the general solution of Eq. (24) is given by, 

1 1 2 2
1 2 3 4e e e ek z k z k z k zF C CC C                            

(25) 

Where, 
2 2

2 2

1 1 1 1 1 24 , 4k p p P k p p P                           

(26) 

     

   

1

1

2

,
2 2 2

bs s s
p

D bs L bs D bs

s s
P

DL bs DL bs

  

   

 

  

 

 



 

  
  

 
 

                   

(27) 

and                are unknown arbitrary 

constants which are to be determined by 

boundary condition Eq.(20) and (21). Using Eq. 

(25) we can write temperature and moisture 

distribution in Laplace domain as 

     1 1 2 22 2

1 1 2 2 3 4e e e ezk zk zk zkT Dk s C Dk Cs CC       

       (28) 

 1 1 2 2

1 2 3 4e e e ezk zk zk zkC s C C C C                              

(29) 

Eq.(28) and (29) gives the temperature and 

moisture distribuition of a non-simple nano-

cylinder in Laplace domain. 

Numerical Inversion of the Laplace Transform  

The numerical results and solutions in the time 

domain are determined using the Riemann-sum 

approximation approach [5]. Any function that 

exists in the Laplace domain (s-domain) can be 

translated to the time domain (t-domain) using 

this numerical method as follows, 

1

1
( ) ( ) Re ( 1)

2

kt N
n

n

e in
f t f k f k

t t





  
      

  

                           

(30) 

Numerous computational studies have 

demonstrated that the value of k  meets the 

relation 4.7kt   for faster convergence.  

 

Numerical Result and Discussion 

In this section, we introduce the non-

dimensional variables indicated below for 

simplification in order to achieve the numerical 

results [17]. 

0 0

0 0

2

/ , / , / , / , , ,

( / ) , / , /x x

T T C C
x x a z z h h h a w w h

T T

t c a t c E E

 


  

 
     

  

            

(31) 

For a porous composite material with material 

parameters, the hygrothermoelastic distribution 

of a beam is computed numerically [6]. 

6 o 3
1 2 2

3 o o 5 2

6 2 3

31.3 10 cm / (cm C), 2.68 10 cm / (cm%H O),

0.5cm C / g, 0.5 / (cm C), 2.16 10 m / s,

2.16 10 m / s, 1590kg / m , 64.3 GPa, 0.33.

g

D E

 

 

 

 





   

   

    

D

             (32) 

The figures were prepared by using the non-

dimensional variables defined in Eq. (31) for a 

wide range of beam length when 1a  , 

/ 6z h  and 0.15t  .  

From figure 2, the dimensionless temperature 

(also known as the thermodynamic temperature 

and the conductive temperature) for thermal and 

moisture diffusion behaviour is always larger 

when the hygrothermal coupling is taken into 

account along the time direction at different 

places of z . 

Figure 3 shows the variation in the 

thermodynamic and conductive temperature for 

various locations in the points along the radial 

direction, which depends on the time and space 

coordinate and the two-temperature parameter 

b. The value of b=0 indicates the one-

temperature theory, while b≠0 indicates the two-

temperature theory. The variation in the 

thermodynamic and conductive temperature 

along the radial direction may be due to the 

available sectional heat source. The plate's 

temperature reaches its highest point at x=0, 
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and while it is maintained at 0 degrees Celsius, 

the temperature gradually decreases as it moves 

toward x=b. The findings are consistent with the 

previously [3] obtained information.  

CONCLUSION : 

In order to resolve the issue of coupled 

temperature and moisture distribution, this 

paper provides a novel analytical strategy that 

uses the Laplace transform technique and a 

transformation function. In light of this, the 

approach is suggested for analytically resolving 

issues involving coupled temperature and 

moisture transport in non-simple materials. The 

conclusion drawn as follows: 

 Temperature distriburion and moisture 

diffusion are significantly impacted by 

the fractional order parameter. 

On the temperature and moisture distribution, 

time has a major impact. 
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