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ABSTRACT:  

The Linear canonical-Mellin transform is a mixed type of integral transform in which function is both linear canonical 

and Mellin transformable. Extension of some transformations to generalized functions have been done time to time 

and their properties have been studied by various mathematicians. However, there is much scope in extending double 

transformations to a certain class of generalized functions. In this paper, Linear Canonical-Mellin transform is 

extended in the distributional generalized sense and inversion theorem for Linear Canonical-Mellin transform is proved 

which can be used to retrieve original function to be transformed.    
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INTRODUCTION : 

Linear canonical-Mellin transform is a mixed 

type of integral transform with composition of 

linear canonical and Mellin transform in which 

linear canonical transform (LCT) is an integral 

transform with generalized kernel and Mellin 

transform is a basic integral transform. The LCT 

is a four-parameter family of integral transform 

defined by [1]: 
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parameters         are real numbers satisfying 

       . On condition that the parameters 

satisfy    , the LCT is essentially a scaling and 

chirp multiplication operations. Without loss of 

generality, we therefore focus mainly on the LCT 

in the case of    . In that case, the inverse LCT 

is 
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It is easy to verify that the LCT with parameters 

(       ) = (                    ) reduces to the 

fractional Fourier transform (FRFT), which, in 

the specific case   
 

 
, becomes the Fourier 

transform and Parseval relation for LCT is given 

by [2]: 
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The Mellin transform is defined as [3]:  
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and its Parseval relation is given by  
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Chii-Huei Yu [4] provided a new technique to 

determine some definite integrals using 

Parseval’s theorem and this technique can be 

applied to solve another definite integral 

problems. Soo-Chang Pei [5,6] derived many 

important properties of discrete fractional 
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Fourier transform and discussed some 

applications, such as the filter design and 

pattern recognition Zemanian [7] studied several 

integral transforms in the distributional 

generalized sense. Sharma et. al. [8, 9] had 

generalized many integral transforms to the 

distribution of compact support and provided 

some operational properties of two-dimensional 

fractional Mellin transform, two dimensional 

fractional Fourier-Mellin transform. The aim of 

this paper is to prove inversion formula of Linear 

Canonical-Mellin transform and Parseval’s 

theorem. 

Linear Canonical-Mellin Transform (LCMT) 

Definition: The conventional Linear Canonical-

Mellin transform is defined as follows: 
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The Testing Function Space  (  ) 

An infinitely differentiable complex valued 

smooth function   on    belongs to  (  ), if for 

each compact set     ,     ,  

where     {     
  | |       }  and    

{       | |       },       , 
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Thus  (  ) will denote the space of all    (  ) 

with support contained in    and   .  Moreover, 

we say that   is a linear canonical-Mellin 

transformable if it is a member of   , the dual 

space of  . 

Distributional Generalized Linear Canonical-

Mellin Transform 

The distributional Linear Canonical-Mellin 

transform of  (   )    (  ) is defined by 
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The right-hand side of (1) is meaningful because 
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Inversion Formula: 

If Linear Canonical-Mellin transform of  (   )  is 

given by 
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Then its inverse  (   ) is given by 
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Proof: - By definition, we have 
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By using inversion formula for Fourier-Mellin 

transform, we get 
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Parseval’s Theorem for Linear Canonical-

Mellin Transform: 

Theorem:  If    { (   )}   
  (   )  and 
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Proof: - We have, by definition 
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By changing the order of integration, we get 
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CONCLUSION :   

In this paper, we proved inversion formula 

associated with Linear Canonical-Mellin 

transform.  Subsequently, Parseval’s theorem is 

proved using inversion formula. The Parseval’s 

theorem is helpful in signal processing, studying 

behaviours of random processes and relating 

functions from one domain to another. In fact, 

the applications of this theorem are extensive, 

and can be used to easily solve many difficult 

problems. 
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