SOLUTIONS OF GENERALITIES FOR SPECIAL TYPE OF WAVE CONTAINING TWO TIME AXES IN V_{4}.

D. N. Warade
Dr. Khatri Mahavidyalaya, Tukum, Chandrapur, India.
Corresponding Email: dnyandeowarade@gmail.com

Communicated :10.12.2022
Revision: 20.01.2023 \& 24.01.2023
Accepted: 26.01.2023

ABSTRACT:

By Considering four dimensional plane symmetric line element containing the two times axes t_{1} and t_{2} as under:

$$
d s^{2}=-A d y^{2}-\phi_{2}^{2} B d z^{2}+\phi_{3}^{2} 2 B d t_{1}^{2}+2 B d t_{2}^{2}
$$

The solutions of propagation equation of the generalities $R_{i j}=0$ in empty region of space-times for $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$ type plane wave is found as

$$
P=\frac{\overline{\bar{m}}}{2 m}-\frac{\bar{m}^{2}}{4 m^{2}}-\frac{\bar{m} \bar{B}}{2 m B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}=0
$$

Equivalent solutions are obtained by employing the concept of curvature tensor and Ricci tensor for above mentioned plane wave.

Keywords: - curvature tensor, Ricci tensor, plane wave solution, general theory of relativity, field equations, four dimensional space-times, generalities.

INTRODUCTION :

In the paper refer it to [1], Kadhao and Thengane, have obtained the plane wave solutions $g_{i j}$ of field equations $R_{i j}=0$ in four dimensional space-times V_{4} having two times axes for general theory of relativity as $\overline{\bar{w}} \rho_{\alpha \beta}+\bar{w} \sigma_{\alpha \beta}=\overline{\bar{\phi}}_{2} \rho_{\alpha \beta}+\bar{\phi}_{2} \sigma_{\alpha \beta}=\overline{\bar{\phi}}_{3} \rho_{\alpha \beta}+\bar{\phi}_{3} \sigma_{\alpha \beta}=0$
where $\quad \phi_{2}=\frac{z_{2}}{z_{4,4}}, \quad \phi_{3}=\frac{z_{3}}{z_{4},}$
$w=\phi_{\alpha} x^{\alpha}=\phi_{2} z+\phi_{3} t_{1}+t_{2}$,
$\sigma_{\alpha \beta}=-\bar{\rho}_{\alpha \beta}+\frac{1}{4}\left[\phi_{\alpha} \phi_{\beta} L_{1}-2 L_{2}\left(\phi_{\beta} \rho_{\alpha}+\phi_{\alpha} \rho_{\beta}\right)+\right.$ $\left.2 \rho_{\alpha \beta}\right]$.
$\rho_{\alpha \beta}=-\phi_{\alpha} \phi_{\beta} L_{2}+\frac{1}{2}\left(\phi_{\alpha} \rho_{\beta}+\phi_{\beta} \rho_{\alpha}\right)$.
(5)

Also, we have established the existence of $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane waves in V_{4} with
reference to the paper [2] and the solutions (1) reduced to
$\bar{L}_{2}-\bar{\rho}_{4}+\frac{\rho_{4}^{2}}{2}-L_{2} \rho_{4}+\frac{L_{1}}{4}=0$
With the proper choice of coordinate system
$g^{i j}=0, \quad g_{i j}=0, \quad i \neq j$, for $[i, j=1,2,3,4]$
we have investigated the general line element in
V_{4} as
$d s^{2}=-A d y^{2}-\phi_{2}^{2} B d z^{2}+\phi_{3}^{2} 2 B d t_{1}^{2}+2 B d t_{2}^{2}$
In the present paper, we have studied the plane wave solutions (6) in detail for $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]-$ type plane wave using the line element (8).
2. $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane wave in V_{4}

For $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane wave, the line element (8) becomes
$d s^{2}=-A d y^{2}-\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{2}^{2}}\right) B d z^{2}+\left(\frac{t_{1}}{t_{2}}\right)^{2} 2 B d t_{1}^{2}+2 B d t_{2}^{2}$
(9)

$$
\Gamma_{22}^{2}=\frac{\bar{B}}{2 B}, \quad \quad \Gamma_{22}^{3}=\left(\frac{-\bar{B}}{4 B}\right) \frac{\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{1}}, \quad \Gamma_{22}^{4}
$$

where A and B are functions of $Z=\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$

$$
=\left(\frac{-\bar{B}}{4 B}\right) \frac{\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{2}}
$$ with

$$
\Gamma_{33}^{2}=\left(\frac{\bar{B}}{B}\right) \frac{t_{1}^{2}}{t_{1}^{2}+t_{2}^{2}}, \quad \Gamma_{33}^{3}=\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{33}^{4}
$$

$$
\begin{equation*}
\phi_{2}=\frac{Z_{, 2}}{Z_{, 4}}=\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{2}}, \quad \phi_{3}=\frac{Z_{, 3}}{Z_{, 4}}=\frac{t_{1}}{t_{2}} \tag{10}
\end{equation*}
$$

$$
=\left(\frac{\bar{B}}{2 B}\right) \frac{t_{1}^{2}}{t_{2} \sqrt{t_{1}^{2}+t_{2}^{2}}}
$$

Then we get
$v^{i}=\phi_{\alpha} g^{\alpha i}=\left[0,\left(\frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\right) \frac{1}{B}, \quad\left(\frac{t_{2}}{t_{1}}\right) \frac{1}{2 B}, \frac{1}{2 B}\right]$,
$\rho_{i}=\bar{g}_{i j} v^{j}=\left[0, \quad\left(\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{2}}\right) \frac{\bar{B}}{B}, \quad\left(\frac{t_{1}}{t_{2}}\right) \frac{\bar{B}}{B}, \quad \bar{B}\right]$,

$$
\begin{equation*}
\Gamma_{23}^{3}=\frac{\bar{B}}{2 B}, \quad \quad \Gamma_{23}^{2}=\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{24}^{2} \tag{12}
\end{equation*}
$$

$L_{2}=\frac{\bar{m}}{2 m}+\frac{3 \bar{B}}{2 B}$,

$$
\begin{equation*}
=\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}} \tag{13}
\end{equation*}
$$

$L_{1}=\frac{\bar{m}^{2}}{m^{2}}+\frac{3 \bar{B}^{2}}{B^{2}}$.

$$
\begin{equation*}
\Gamma_{24}^{4}=\frac{\bar{B}}{2 B}, \quad \quad \Gamma_{34}^{3}=\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{34}^{4}= \tag{14}
\end{equation*}
$$

The field equations (6) then yield

$$
\begin{equation*}
\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}} \tag{16}
\end{equation*}
$$

$P=\frac{\overline{\bar{m}}}{2 m}-\frac{\bar{m}^{2}}{4 m^{2}}-\frac{\bar{m} \bar{B}}{2 m B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}=0$
3. $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane wave in V_{4}.

Non-vanishing components of Christoffel symbol from (9) are calculated as follows.

$$
\begin{aligned}
& \Gamma_{12}^{1}=\frac{\bar{A}}{2 A}, \quad \Gamma_{13}^{1}=\left(\frac{-\bar{A}}{2 A}\right) \frac{t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{14}^{1} \\
&=\left(\frac{-\bar{A}}{2 A}\right) \frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}} \\
& \Gamma_{11}^{2}=\left(\frac{-\bar{A}}{2 B}\right) \frac{t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}}, \quad \Gamma_{11}^{3}=\left(\frac{-\bar{A}}{4 B}\right) \frac{t_{2}^{2}}{t_{1} \sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{11}^{4} \\
&=\left(\frac{-\bar{A}}{4 B}\right) \frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}
\end{aligned}
$$

$$
\begin{align*}
\Gamma_{44}^{2}=\left(\frac{\bar{B}}{B}\right) \frac{t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}}, & \quad \Gamma_{44}^{3}=\left(\frac{\bar{B}}{2 B}\right) \frac{t_{2}^{2}}{t_{1} \sqrt{t_{1}^{2}+t_{2}^{2}}}, \quad \Gamma_{44}^{4} \\
& =\left(\frac{-\bar{B}}{2 B}\right) \frac{t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}} \tag{11}
\end{align*}
$$

Non-vanishing components of curvature tensor in V_{4} are as under

$$
\begin{align*}
R_{1212}=\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right], \quad & R_{1213} \tag{15}\\
& =\left(\frac{-t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\right)\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right]
\end{align*}
$$

$$
R_{1214}=\left(\frac{-t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\right)\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right], \quad R_{1313}
$$

$$
=\left(\frac{t_{1}^{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right]
$$

$$
R_{1314}=\left(\frac{t_{1} t_{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right], \quad R_{1414}
$$

$$
=\left(\frac{t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}\right]
$$

$$
R_{2323}=-\left(\frac{t_{1}}{t_{2}}\right)^{2}\left[\frac{\overline{\bar{B}}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}\right], \quad \quad R_{2324}=\left(\frac{t_{1}}{t_{2}}\right)\left[\frac{\overline{\bar{B}}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}\right]
$$

$$
R_{2334}=\left(\frac{-2 t_{1}^{2}}{t_{2} \sqrt{t_{1}^{2}+t_{2}^{2}}}\right)\left[\frac{\overline{\bar{B}}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}\right], \quad R_{2424}=-\left[\frac{\overline{\bar{B}}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}\right]
$$

$R_{2434}=\left(\frac{2 t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\right)\left[\frac{\overline{\bar{B}}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}\right], \quad R_{3434}=\left(\frac{-4 t_{1}^{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{B}}}{2}-\right.$
$\left.\frac{3}{4} \frac{\bar{B}^{2}}{B}\right]$,
They are related as
$u=R_{1212}=\left(\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{1}}\right) R_{1213}=\left(\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{2}}\right) R_{1214}=$
$\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{1}^{2}}\right) R_{1313}=\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{1} t_{2}}\right) R_{1314}=\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{2}^{2}}\right) R_{1414}$
and
$v=-\left(\frac{t_{2}}{t_{1}}\right)^{2} R_{2323}=\left(\frac{t_{2}}{t_{1}}\right) R_{2324}=\left(\frac{-t_{2} \sqrt{t_{1}^{2}+t_{2}^{2}}}{2 t_{1}^{2}}\right) R_{2334}=$
$-R_{2424}=\left(\frac{\sqrt{t_{1}^{2}+t_{2}^{2}}}{2 t_{1}}\right) R_{2434}=-\left(\frac{t_{1}^{2}+t_{2}^{2}}{4 t_{1}^{2}}\right) R_{3434}$.
where $\quad u=\frac{\overline{\bar{A}}}{2}-\frac{\bar{A}^{2}}{4 A}-\frac{\bar{A} \bar{B}}{2 B}$,
$v=\frac{\bar{B}}{2}-\frac{3}{4} \frac{\bar{B}^{2}}{B}$.
And non-vanishing components of Ricci tensor are calculated as under

$$
\begin{gathered}
R_{22}=\frac{\overline{\bar{A}}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}, \\
R_{23}=\left(\frac{-t_{1}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\right)\left[\frac{\bar{A}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\bar{B}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}\right], \\
R_{24}=\frac{-t_{2}}{\sqrt{t_{1}^{2}+t_{2}^{2}}}\left[\frac{\overline{\bar{A}}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}\right], \\
R_{34}=\left(\frac{t_{1} t_{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}\right], \\
R_{33}=\left(\frac{t_{1}^{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\overline{\bar{B}}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}\right], \\
R_{44}=\left(\frac{t_{2}^{2}}{t_{1}^{2}+t_{2}^{2}}\right)\left[\frac{\overline{\bar{A}}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\bar{B}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}\right],
\end{gathered}
$$

These are related as
$P=R_{22}=\left(\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{1}}\right) R_{23}=\left(\frac{-\sqrt{t_{1}^{2}+t_{2}^{2}}}{t_{2}}\right) R_{24}=$

$$
\begin{equation*}
\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{1} t_{2}}\right) R_{34}=\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{1}^{2}}\right) R_{33}=\left(\frac{t_{1}^{2}+t_{2}^{2}}{t_{2}^{2}}\right) R_{44} \tag{22}
\end{equation*}
$$

where $\quad P=\frac{\bar{A}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\bar{B}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}$.

The field equations (6) becomes
$\frac{\bar{A}}{2 A}-\frac{\bar{A}^{2}}{4 A^{2}}-\frac{\bar{A} \bar{B}}{2 A B}+\frac{\bar{B}}{2 B}-\frac{3 \bar{B}^{2}}{4 B^{2}}=0$
which is equivalent to (15).

CONCLUSION:

The plane wave solutions of generalities $R_{i j}=0$ in four dimensional space-times V_{4} for $[z-$ $\left.\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane wave can be obtained by using the concept of curvature tensor as well as without using the concept of curvature tensor and found that both results are equivalent to each other.

REFERENCES:

Kadhao S R and Thengane K D
'Plane wave solutions of field equations $R_{i j}=0$ in V_{4} with two time axes', communicated to Bulletin of pure and applied sciences, New Delhi
Kadhao and Thengane K D
' $\left[z-\sqrt{t_{1}^{2}+t_{2}^{2}}\right]$-type plane waves in fourdimensional space-times', ommunicated to Bulletin of pure and applied sciences, New Delhi.

Takeno H. 'The Mathematical Theory of plane gravitational wave in general relativity', scientific report of the research institute for theoretical physics, Hiroshima University, Hiroshima-Ken Japan.

