

Pollen Diversity Studies in Some Taxa of Bicarpellatae from Nagpur

Sapna V. Awachat

Department of Botany, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

Abstract:

Dicots are the diverse group of plants on the basis of morphology, anatomy, cytogenetics, embryology and pollen morphology. Pollen diversity is the study of the variations in the morphology of pollen grains. Pollen has also proved to be an excellent tool in taxonomic studies. The application of pollen characters in solving controversial taxonomical and phylogenetic problems has now been widely recognized all over the world (Mandal, 2010). In the present paper, pollen diversity of several taxa belonging to Bicarpellatae (Apocynaceae, Asclepiadaceae, Boraginaceae, Convolvulaceae, Solanaceae, Scrophulariaceae, Acanthaceae, Thunbergiaceae, Verbenaceae, Lamiaceae, etc.) from Nagpur is selected. The pollen grains show variations with respect to exine ornamentation, aperture type, shape, size and NPC (number, position, character) classification etc. The pollen slides were prepared by using acetolysis method (Erdtman 1952) and documentation was done by using light microscope and digital camera. The pollen grain studies show variation in exine ornamentation (psilate to verrucate), aperture (porate to spiraperturate), shape (oblate to prolate) and size (small to large). The pollens described on the basis of NPC classification are presented. Pollen calendar and distribution was also noted in all taxa. It is found that the pollen grains with relative variations in pollen morphology help us to differentiate families.

Keywords: Bicarpellatae, Pollen grains, Acetolysis.

Introduction:

Palynology involves the study of pollen and encompasses the structural and functional aspect of pollen. Pollen grains come in an infinite variety of shapes with complex surface ornamentation and occur on almost every surface in nature. On account of its unique characters, pollen and spores are often referred as nature's fingerprints of plants (Agashe 2006). The study of morphology of pollen grains is basic necessity because of its fundamental value in the recognisation and identification of grains found in various conditions (Arora and Modi, 2008). Dicot families are highly diversified and pollen morphology of pollen grains is known pollen diversity. The application of pollen characters in solving controversial taxonomical and phylogenetic problems has now been widely recognized all over the world. Pollen has also proved to be an excellent tool for taxonomic studies.

In the present investigation, the pollen diversity in several taxa of Bicarpellatae from Nagpur is studied. The series Bicarpellatae includes four orders (cohorts) as Gentiales, Polemoniales, Personales, Lamiales and fourteen families (orders) according to Bentham and Hooker system of classification. The pollen grain morphology of several taxa belonging to series Bicarpellatae (Apocynaceae, Gentianaceae, Ploemoniaceae, Convolvulaceae, Solanaceae, Scrophulariaceae, Acanthaceae, Thunbergiaceae, Lamiaceae ,Verbenaceae etc.) from Nagpur were selected. The study was undertaken to reveals the pollen morphological variations using Light Microscope so as to understand palynological characteristics within different taxa. The pollen grains were acetolyzed to remove the protoplasmic

contents so that its exine diagnostic features such as ornamentation, apertures and exine stratification can be observed. The pollen grains show variations with respect to aperture type, shape, size [polar axis (PA), equatorial axis (EA)], exine ornamentation and NPC (number, position, character) classification etc.

Material and Methods:

Polliniferous material (mature anthers) was mostly collected from identified plants fresh flowers in small vials and fixed in 70% alcohol during field trip. At least five floral buds per specimen were dissected for anthers. The anthers were then acetolyzed according to Erdtman (1960) for eight to nine minutes at 80–90°C; depending on the condition of the anthers the duration and temperature were modified as necessary. Samples for light microscopy were mounted on slides using glycerol jelly, and then sealed with nail polish. Microphotography of slides of pollen grains was done by Zeiss Axio Star Plus Trinocular microscope using Canon Power shot A 620 7.1 Megapixel digital camera.

Observations:

The pollen diversity of total 24 taxa belonging to Bicarpellatae from Nagpur is selected. The investigated families and taxa for pollen diversity are as follows, in Apocynaceae 4 taxa (Rauvolfia serpentina Allamanda cathartica Plumeria rubra Plumeria alba Nerium oleander), Convolvulaceae 4 taxa (Ipomoea aquatic, Ipomoea obscura, Ipomoea carnea sub sp. fistulosa and Convolvulus arvensis), Solanaceae 2 taxa (Physalis minima, Solanum virginianum), Polemoniaceae 1 taxa (Phlox dovnondii), Scrophulariaceae 1 taxa (Verbascum chinense), Gentianaceae 1 taxa (Canscora decurrens), Thunbergiaceae 1 taxa (Thunbergia fragrans), Acanthaceae 6 taxa (Ecbolium ligustrinum, Justicia adhatoda, Gantelbua urens, Ruellia tuberose, Blepharisrepens and Rungia rapens), Lamiaceae 2 taxa (Hyptis suaveolens, Leucas biflora) and Verbenaceae 1 taxa (Petrea volubilis). The pollen grains variations with respect to above taxa are categorized into different groups as size (polar axis) $PA(\mu)$ and (equatorial axis) $EA(\mu)$, shape classes, nature of apertures, NPC (number, position, character) classification, exine ornamentation, sexine nexine ratio and pollen calendar is shown in Table 1.

S. No	Plant Name	Family	Size PA (µ)	Size EA (µ)	Shape classes	Nature of aperture	NPC	Exine ornam- entation	Sexin e Nexin e ratio	Pollen calend ar
1	Rauvolfia serpentina	Apocynaceae	46	30	Prolate	Colporate	345	Reticulate	Equal	March – May
2	Allamanda cathartica	Apocynaceae	20	20	Spheroidal	Colporate	345	Reticulate	Equal	Almost throug hout year
3	Plumeria rubra	Apocynaceae	22	22	Spheroidal	Syncolpate	343	Psilate	Equal	March- Sept.
4	Plumeria alba	Apocynaceae	22	22	Spheroidal	Syncolpate	343	Psilate	Equal	May – Sept.
5	Nerium oleonder	Apocynaceae	28	28	Spheroidal	Colporate	345	Finely reticulate	Equal	Almost throug hout year
6	Canscora decurrens	Gentianaceae	22	16	Prolate	Colporate	345	Reticulate	Equal	Sept - Feb.
7	Ipomoea aquatica	Convolvulaceae	46	46	Spheroidal	Pantoporate	764	Echinate	Equal	Throug hout year
8	Ipomoea obscura	Convolvulaceae	58	58	Spheroidal	Pantoporate	764	Echinate	Equal	Aug Feb.
9	Ipomoea carnea sub sp. fistulosa	Convolvulaceae	134	134	Spheroidal	Pantoporate	764	Echinate	Equal	Throug hout year
10	Convolvulus arvensis	Convolvulaceae	40	40	Spheroidal	Colpate	343	Reticulate	Sexine thick	Dec June
11	Solanum virginianum	Solanaceae	20	14	Prolate	Colpate	345	Psilate	Equal	Dec May
12	Physalis minima	Solanacea <mark>e</mark>	22	18	subprolate	colporate	345	Psilate	Nexine thick	July – April
13	Phlox dovnondii	Polemoniaceae	20	20	Spheroidal	Porate	746	Crotonoid pattern	Sexine thick	Sept. – Dec.
14	Verbascum chinense	Scrophulariaceae	18	14	Sub-prolate	Colporate	345	Psilate	Equal	Sept. – June
15	Thunbergia fragrans	Thunbergiaceae	40	40	Spheroidal	Spiraperturate	800	Reticulate	Sexine thick	Sept Dec.
16	Ecbolium ligustrinum	Acanthaceae	20	20	Spheroidal	Heterocolpate	645	Reticulate	Sexine thick	Oct May
17	Justicia adhatoda	Acanthaceae	32	20	Prolate	Porate	244	Reticulate	Sexine thick	Aug. – March
18	Gantelbua urens	Acanthaceae	36	20	Prolate	Porate	444	Striate	Equal	Dec. – March
19	Ruellia tuberosa	Acanthaceae	46	46	Spheroidal	Porate	344	Crotonoid pattern	Sexine thick	Sept May
20	Blepharis repens	Acanthaceae	20	14	Prolate	Colpate	143	Reticulate	Equal	Oct. – March
21	Rungia rapens	Acanthaceae	20	14	Prolate	Colpate	244	Psilate	Nexine thick	Nov March
22	Hyptis suaveolens	Lamiaceae	10	12	Sub-oblate	Colpate	643	Reticulate	Sexine thick	Oct Feb.
23	Leucas biflora	Lamiaceae	16	12	Prolate	Colpate	343	Finely reticulate	Equal	Aug April
24	Petrea volubilis	Verbenaceae	20	30	Oblate	Porate	344	Obscure	Sexine thick	Feb April

Figure. 2- Microphotographs of taxa

Conclusions:

The pollen grain studies of several families of series Bicarpellatae (Apocynaceae, Gentianaceae, Polemoniaceae, Convolvulaceae, Solanaceae, Scrophulariaceae, Thunbergiaceae, Acanthaceae, Lamiaceae, Verbenaceae etc.) show variations in aperture (porate to spiraperturate), shape (oblate, spheroidal to prolate) size (small to large) and exine ornamentation (psilate to reticulate).

The pollens were described on the basis of NPC classification. Pollen calendar was also recorded for all taxa. As pollen calendar provide knowledge of the occurrence and concentration of the allergenic pollen, which is of great help to the aerobiologists and clinicians. It is found that the pollen grains with relative variations in pollen morphology help us to differentiate families.

In the study we also found trend of evolution in pollen grains apertures, the tricolpate condition have given rise to polycolpate, heterocolpate, tricolporate, triporate, pantoporate, the similar condition reported by Takhtajan (1980). The present investigation can be an additional tool for taxanomic identification.

Acknowledgement:

The author wishes to record his deep sence of gartitude to Dr. Saoji mam for their help during investigation and Dr. Nitin Dongarwar who were chiefly instrumental in introducing me to this intresting discipline of Botany. They were constantly a source of inspiration during the period of this investigation.

References:

Agashe S. (2006). Palynology and Its Application. Oxford and IBH Pub. Co. Pvt Ltd. New Delhi, India

Arora A. and Modi A. (2008). An acetolysis technique for pollen slide preparation. Indian J. Aerobiol. 21 (2): 90-91.

Erdtman G. (1952). The acetolysis method. A revised description. Sv. Bot. Tidskr., 54, 561–564.

Takhtajan, AL. (1980). Bot. Rev.46:225-359.

