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Preliminaries :  
 Let f(z) be a transcendental meromorphic function in the finite complex plane.  Let P(f) denote 
the homogeneous differential polynomial in f.  As in Hayman [5], such functions will be called 
differential polynomials in f.  Thus a differential polynomial P in f is the sum of a finite number of 

terms of the form af
( ) ( )1

01 (1) ( )
...

ml lm
f f

where 
(1) (2)

,f f
……  are successive derivatives of f and 10,11, 

………1m are non -negative integers.  If 10 + 11 +……+1m = n (a fixed positive integer) in every term of 
P, then P is called homogeneous differential polynomial in f of degree n.  in general, if max (10 +11+ 
…1m) = n where the maximum is taken over the term of P, then P is said to be a differential 
polynomial if f of degree at most n.  
Definition 1: If f1, f2 are meromorphic functions, we denote by S(r;f1, f2) a function of r such that S(r; 

f1, f2) = 

2

1

( , i

i

o T r f
=

 
 
 
∑

 as r → ∞ through all values if f

'

i  s are of finite orders and outside a set of 

finite linear measure.  
Here we prove the theorems by using following lemmas.  
Lemma 1. [9] If P is a homogenous differential polynomial in f of degree  

             

1, , ( , ).
n

P
n then m r S r f

f

 
≥ = 

   
Lemma 2. : [1]  Let P be a homogeneous differential polynomial in f of degree n and suppose that P 
does not involve f.  That is, P is a homogeneous differential polynomial of degree n in f(1), f(2) ,… with 
coefficients of the form a (z).  If P is not a constant and b1, b2, … bq are distinct elements of c (where q 
is any positive integer), then  

  1

1
( , , ) , ( , ) ( , )

q

i

i

n m r b f N r T r P S r f
P=

 
+ ≤ + 

 
∑

 
Lemma 3. [10]  Let f1, f2 be two non-constant meromorphic functions such that a1f1 + a2f2 ≡ 1, where 
a1, a2 are constants.  Then for i = 1, 2  

  

1 2

1 2

1 1
( , ) , , ( , ) ( , , )i iT r f N r N r N r f S r f f

f f

   
< + + +   

      …….(1) 
Lemma 4 : [1] Let f be a meromorphic function satisfying  

1
( , ) , ( , )N r f N r S r f

f

 
+ = 

    and let P be a homogeneous differential polynomial in f.  Suppose 

that P is not a constant.  Then the order of P is equal to the order of f and 

1
( , ) , ( , )N r P N r S r P

P

 
+ = 

    so that 

1
, ( , )N r S r P
P a

 
≠ 

−   and Θ(a,P) = 0 for all a ≠ 0, ≠ ∞ and 

there exists no evB for P for distinct zeros in 
{ }0,C − ∞

.  

A.P. Sing and Dukane [11] have proved the following result.  

Theorem A. Let f (z) be a meromorphic function and πn (f) be a homogenous differential Polynomial of 

degree n.  
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where m is the highest derivative occurring in πn(f) and p is the number of terms in πn(f).  
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Here we shall prove the following improvement of the above theorem.  The result here is independent 
of the number of terms in P.  
Theorem 1:  Let f (z) be a meromorphic function and P(f) be a homogeneous differential Polynomial of 
degree n.  

             

( , )
,

( , )

1
( , ) 1 , ...........(2)

T r P
Let as r where n then

T r f

f
m mn

α α

α

→ → ∞ ≥

Θ ∞ ≤ + −
      

where m is the highest derivative occurring in P(f).  

Proof :  Let 

( , )

( , )

T r P
as r where n

T r f
α α→ → ∞ ≥
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n

n

P
Now m r P m r m r f

f

n m r f S r f by Lemma

 
≤ + 

 

= +
 

 
At a pole of f of order P which is not a pole of any of the coefficient a(z) of P, P has a pole of order at 

most pn + mn.  
So,  

     
( , ) ( , ) ( , ) ( , ). ..........(4)N r P nN r f mn N r f S r f≤ + +

 
From (3) and (4), we get.  
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Since it fallows that
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Dividing (5), by T(r,f) and taking limit superior, we get  

  

( , ) ( , )
lim sup limsup .
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Consequently,  

 nmΘ(∞,f) ≤ nm + n - α and so  

 

1
( , ) 1f

m nm

α
Θ ∞ ≤ + −

 
Remark - If m = 1 , n=1  then  Θ(∞, f) ≤ 2 -α this is an interesting generalization of theorem 3 of S.K. 
Singh and V. N. Kulkarni [12].  
Bhoosnurmath [1] has proved the following result.  

Theorem B. Let f be a meromorphic function of finite order.  If P is a homogeneous differential 
polynomial in f of degree n and if P does not involve f,  then  

  

( , )
( , ) ( , ) lim sup

( , )r
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n b f O P

T r f
δ δ
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and  

( , )
( , ) ( , ) liminf
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n b f O P
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δ
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∈

≤ ∆∑
 

provided that P does not reduce to a constant.  
In view of this, we can obtain the following theorem.  
Theorem 2. Let f be a meromorphic function of finite order.  If P is a homogenous differential 

polynomial in f of degree n and if P does not involve f, and   
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provided that P does not reduce to a constant.  
Corollary 2.2.1 : Let f be a meromorphic function of finite order with  

( , )
lim , ( , ) 1

( , )r
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T r P
a f

T r f
α δ
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∈
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If P is a homogeneous differential polynomial in f of degree n and not involving f, then  

( , ) ( , ) ........(8)
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provided that P does not reduce to a constant.  In particular (10) and (11) hold if  

f is an entire function 
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Theorem 2.2.3.1 :  Let P[f] be a homogeneous differential polynomial such that each term of P 
involves f, then the order of P [f] and order of f are equal.  
Proof.  We have  
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we have 
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Substituting (11) in (10) , we get  

log ( , [ ]) log ( , ) logT r P f T r f C≤ +
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Since a zero or a pole of f, which is not a pole of any coefficient a(z) of P, is a pole of  
n

P

f
 of degree mn 

at most, we have  
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Since each term of P involves f term, if follows that  
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From (12) and (13) we conclude that P fρ ρ=
 

Theorem 4 : Let f be a meromorphic function satisfying 

1
( , ) , ( , ).N r f N r S r f

f

 
+ = 

   Let P(f) be a 

homogeneous differential polynomial which does not reduce to a constant.  If G is a mermorphic 

function such that,  

1
, ( , ),N r S r G
G

 
= 

   then the identity, P + G ≡ 1 is impossible.  
 This theorem was proved by H.S. Gopalkrishna and S.S. Bhoosnumath [1] but here we 

improve this theorem removing the condition 
(0, ) 0.GΘ >

 It is also interesting to note that here we 

use a different technique.  

Proof.  Suppose P + G ≡ 1 holds.  

Now         N (r,P) ≤ N (r,f) + S(r,f)  
    = S(r, f), by hypothesis  

Therefore  N (r,P) = S(r, P).       …….(14) 
Because  S(r, f) = S(r,P).  

  N (r, P) = S(r,f) = S(r,P).  

Also   

( )
1 1

, 1 , ( , ) ( , )N r mn N r mnN r f S r f
P f

  
≤ + + +  

     

  = S(r,f), by hypothesis  

Therefore         

( ) ( )
1

, , , ......(15)N r S r f S r P
P
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Then by Lemma 3 , we have  
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1
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P G

T r P N r S r G S r P G
G

   
< + + +   
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      by Lemma 4. 
Since P + G = 1 holds, is follows that  
 T(r,P) ~ T(r,G) and S(r,G) = S(r,P).              …….(17) 
By (16) and (17) , we have  

1
( , ) , ( , ) ( , ) ( , )T r G N r S r G Or T r G S r G

G

 
< + < 

   by hypothesis.  
This is a contradiction.  

Thus, P + G ≡ 1 is impossible.  
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