SOME RESULTS ON DIFFERENTIAL POLYNOMIALS

S. M. Pawar
Department of Mathematics, Lal Bahadur Shashtri College, Satara
shankar62pawar@gmail.com

Preliminaries :

Let $f(z)$ be a transcendental meromorphic function in the finite complex plane. Let $P(f)$ denote the homogeneous differential polynomial in f. As in Hayman [5], such functions will be called differential polynomials in f. Thus a differential polynomial P in f is the sum of a finite number of terms of the form af ${ }^{1_{0}}\left(f^{(1)}\right)^{l_{1}} \ldots\left(f^{(m)}\right)^{l_{m}}$ where $f^{(1)}, f^{(2)} \ldots \ldots$ are successive derivatives of f and $1_{0}, 1_{1}$, $\ldots \ldots . .1_{\mathrm{m}}$ are non -negative integers. If $1_{0}+1_{1}+\ldots . .+1_{\mathrm{m}}=\mathrm{n}$ (a fixed positive integer) in every term of P, then P is called homogeneous differential polynomial in f of degree n. in general, if max $\left(1_{0}+1_{1}+\right.$ $\left.\ldots 1_{\mathrm{m}}\right)=\mathrm{n}$ where the maximum is taken over the term of P , then P is said to be a differential polynomial if f of degree at most n.
Definition 1: If f_{1}, f_{2} are meromorphic functions, we denote by $S\left(r ; f_{1}, f_{2}\right)$ a function of r such that $S(r ;$ $\left.\mathrm{f}_{1}, \mathrm{f}_{2}\right)=o\left(\sum_{i=1}^{2} T\left(r, f_{i}\right)\right.$ as $\mathrm{r} \rightarrow \infty^{\infty}$ through all values if $\mathrm{f}^{i} \mathrm{~s}$ are of finite orders and outside a set of finite linear measure.
Here we prove the theorems by using following lemmas.
Lemma 1. [9] If P is a homogenous differential polynomial in f of degree

$$
n \geq 1, \text { then } m\left(r, \frac{P}{f^{n}}\right)=S(r, f)
$$

Lemma 2. : [1] Let P be a homogeneous differential polynomial in f of degree n and suppose that P does not involve f. That is, P is a homogeneous differential polynomial of degree n in $f^{(1)}, f^{(2)}, \ldots$ with coefficients of the form $\mathrm{a}(\mathrm{z})$. If P is not a constant and $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{q}}$ are distinct elements of c (where q is any positive integer), then

$$
n \sum_{i=1}^{q} m\left(r, b_{i}, f\right)+N\left(r, \frac{1}{P}\right) \leq T(r, P)+S(r, f)
$$

Lemma 3. [10] Let f_{1}, f_{2} be two non-constant meromorphic functions such that $\mathrm{a}_{1} \mathrm{f}_{1}+\mathrm{a}_{2} \mathrm{f}_{2} \equiv 1$, where $\mathrm{a}_{1}, \mathrm{a}_{2}$ are constants. Then for $\mathrm{i}=1,2$

$$
\begin{equation*}
T\left(r, f_{i}\right)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, f_{i}\right)+S\left(r, f_{1}, f_{2}\right) \tag{1}
\end{equation*}
$$

Lemma 4 : [1] Let f be a meromorphic function satisfying
$\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$
that P is not a constant.
and let P be a homogeneous differential polynomial in f . Suppose $\bar{N}(r, P)+\bar{N}\left(r, \frac{1}{P}\right)=S(r, P)$ so that $\bar{N}\left(r, \frac{1}{P-a}\right) \neq S(r, P)$ and $\Theta(\mathrm{a}, \mathrm{P})=0$ for all $\mathrm{a} \neq 0, \neq \infty$ and there exists no evB for P for distinct zeros in $\bar{C}-\{0, \infty\}$.
A.P. Sing and Dukane [11] have proved the following result.

Theorem A. Let $\mathrm{f}(\mathrm{z})$ be a meromorphic function and $\pi_{\mathrm{n}}(\mathrm{f})$ be a homogenous differential Polynomial of degree n .

$$
\begin{aligned}
& \text { Let } \quad \frac{T\left(r, \pi_{n}(f)\right)}{T(r, f)} \rightarrow \alpha \text { as } r \rightarrow \infty \text { where } \alpha \geq n, \text { then } \\
& \Theta(\infty, f) \leq 1+\frac{1}{m}-\frac{\alpha}{p m n}
\end{aligned}
$$

where m is the highest derivative occurring in $\pi_{n}(f)$ and p is the number of terms in $\pi_{n}(f)$.

Here we shall prove the following improvement of the above theorem. The result here is independent of the number of terms in P.
Theorem 1: Let $\mathrm{f}(z)$ be a meromorphic function and $\mathrm{P}(\mathrm{f})$ be a homogeneous differential Polynomial of degree n .

$$
\text { Let } \begin{align*}
& \frac{T(r, P)}{T(r, f)} \rightarrow \alpha \text { as } r \rightarrow \infty \text { where } \alpha \geq n, \text { then } \\
& \Theta(\infty, f) \leq 1+\frac{1}{m}-\frac{\alpha}{m n} \tag{2}
\end{align*}
$$

where m is the highest derivative occurring in $\mathrm{P}(\mathrm{f})$.
Proof : Let $\frac{T(r, P)}{T(r, f)} \rightarrow \alpha$ as $r \rightarrow \infty$ where $\alpha \geq n$

$$
\begin{align*}
\text { Now } \quad & m(r, P) \leq m\left(r, \frac{P}{f^{n}}\right)+m\left(r, f^{n}\right) \\
= & n m(r, f)+S(r, f) \quad \text { by Lemma } 1 \tag{3}
\end{align*}
$$

At a pole of f of order P which is not a pole of any of the coefficient $a(z)$ of P, P has a pole of order at most pn + mn.
So,

$$
\begin{equation*}
N(r, P) \leq n N(r, f)+m n \bar{N}(r, f)+S(r, f) \tag{4}
\end{equation*}
$$

From (3) and (4), we get

$$
\begin{align*}
& T(r, P) \leq n T(r, f)+m n \bar{N}(r, f)+S(r, f) \\
& \text { Since } \frac{T(r, P)}{T(r, f)} \rightarrow \alpha \text { it fallows that } \\
& \alpha T(r, f) \leq n T(r, f)+m n \bar{N}(r, f)+S(r, f) \tag{5}
\end{align*}
$$

Dividing (5), by $\mathrm{T}(\mathrm{r}, \mathrm{f})$ and taking limit superior, we get

$$
\alpha-n \leq \limsup _{r \rightarrow \infty} \frac{n m \bar{N}(r, f)}{T(r, f)}+\limsup _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)}
$$

$$
\text { Thus } \alpha-n \leq n m(1-\Theta(\infty, f))
$$

Consequently,
$\mathrm{nm} \Theta(\infty, \mathrm{f}) \leq \mathrm{nm}+\mathrm{n}-\alpha$ and so

$$
\Theta(\infty, f) \leq 1+\frac{1}{m}-\frac{\alpha}{n m}
$$

Remark - If $m=1, n=1$ then $\Theta(\infty, f) \leq 2-\alpha$ this is an interesting generalization of theorem 3 of S.K. Singh and V. N. Kulkarni [12].
Bhoosnurmath [1] has proved the following result.
Theorem B. Let f be a meromorphic function of finite order. If P is a homogeneous differential polynomial in f of degree n and if P does not involve f , then

$$
n \sum_{b \in C} \delta(b, f) \leq \delta(O, P) \lim _{r \rightarrow \infty} \sup \frac{T(r, P)}{T(r, f)}
$$

and
$n \sum_{b \in C} \delta(b, f) \leq \Delta(O, P) \liminf _{r \rightarrow \infty} \frac{T(r, P)}{T(r, f)}$
provided that P does not reduce to a constant.
In view of this, we can obtain the following theorem.
Theorem 2. Let f be a meromorphic function of finite order. If P is a homogenous differential polynomial in f of degree n and if P does not involve f, and

$$
\begin{align*}
& \liminf _{r \rightarrow \infty} \frac{T(r, P)}{T(r, f)}=\limsup _{r \rightarrow \infty} \frac{T(r, P)}{T(r, f)}=\alpha, \text { then } \\
& n \sum_{a \in C} \delta(a, f) \leq \alpha \delta(O, P) \tag{6}
\end{align*}
$$

and $\quad n \sum_{a \in C} \delta(a, f) \leq \alpha \Delta(O, P)$
provided that P does not reduce to a constant
Corollary 2.2.1 : Let f be a meromorphic function of finite order with
$\lim _{r \rightarrow \infty} \frac{T(r, P)}{T(r, f)}=\alpha, \sum_{a \in C} \delta(a, f)=1$
If P is a homogeneous differential polynomial in f of degree n and not involving f , then
$n \leq \alpha \delta(O, P)$ and $n \leq \alpha \Delta(O, P)$
If $\alpha=n, \delta(O, P)=\Delta(O, P)=1$
provided that P does not reduce to a constant. In particular (10) and (11) hold if
f is an entire function $\lim _{r \rightarrow \infty} \frac{T(r, P)}{T(r, f)} \rightarrow \alpha$ and $\sum_{a \in c} \delta(a, f)=1$.
Theorem 2.2.3.1 : Let $\mathrm{P}[\mathrm{f}]$ be a homogeneous differential polynomial such that each term of P involves f, then the order of $P[f]$ and order of f are equal.
Proof. We have

$$
\begin{align*}
& P[f]=\sum a f^{1_{0}}\left(f^{(1)}\right)^{1} \ldots\left(f^{(m)}\right)^{1_{m}} \\
& T(r, P[f]) \leq T(r, a)+1_{0} T(r, f)+1_{1} T\left(r, f^{\prime}\right)+\ldots+1_{m} T\left(r, f^{m}\right) . \\
& T(r, P[f]) \leq T(r, f)\left(l_{0}+l_{1} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}+1_{2} \frac{T\left(r, f^{\prime \prime}\right)}{T(r, f)}+\ldots+\frac{T\left(r, f^{m}\right)}{T(r, f)}\right)+S(r, f)
\end{align*}
$$

we have

$$
\lim _{r \rightarrow \infty} \sup \frac{T(r, P)}{T(r, f)} \leq n[(m+1)-m \Theta(\infty, f)]
$$

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T\left(r, f^{m}\right)}{T(r, f)} \leq m+1, \text { for all } m \geq 1 \tag{11}
\end{equation*}
$$

Substituting (11) in (10), we get
$\log T(r, P[f]) \leq \log T(r, f)+\log C$
$\rho_{p}=\lim _{r \rightarrow \infty} \sup \frac{\log T(r, P(f))}{\log r} \leq \lim _{r \rightarrow \infty} \sup \frac{\log T(r, f)}{\log r}=\rho_{f}$
$\therefore \rho_{p} \leq \rho_{f}$
Since a zero or a pole of f , which is not a pole of any coefficient $\mathrm{a}(z)$ of P , is a pole of $\frac{P}{f^{n}}$ of degree mn at most, we have

$$
\begin{gathered}
N\left(r, \frac{P}{f^{n}}\right) \leq m n\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)\right)+S(r, f) \\
n T(r, f)=T\left(r, f^{n}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \leq T\left(r \frac{f^{n}}{P}\right)+T(r, P) \\
& \leq T\left(r, \frac{P}{f^{n}}\right)+T(r, P)+0(1) \\
& \\
& \leq T(r, P)+m n\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)\right)+S(r, f) \\
&
\end{aligned}
$$

Since each term of P involves f term, if follows that

$$
\begin{align*}
& \bar{N}(r, f) \leq N(r, P) \text { and } \bar{N}\left(r, \frac{1}{f}\right)<\bar{N}\left(r, \frac{1}{P}\right) \\
& n T(r, f) \leq T(r, P)+m n\left(\bar{N}\left(r, \frac{1}{P}\right)+\bar{N}(r, P)\right)+S(r, f) \\
& \leq T(r, P)+m n(2 T(r, P))+S(r, f) \\
& \leq(1+2 m n) T(r, P)+S(r, f) \\
& \rho_{f}=\lim _{r \rightarrow \infty} \sup \frac{\log T(r, f)}{\log r} \leq \lim _{r \rightarrow \infty} \sup \frac{\log T(r, P[f])}{\log r}=\rho_{P} \tag{13}
\end{align*}
$$

From (12) and (13) we conclude that $\rho_{P}=\rho_{f}$

Theorem 4 : Let f be a meromorphic function satisfying

$$
\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)
$$

Let $P(f)$ be a homogeneous differential polynomial which does not reduce to a constant. If G is a mermorphic function such that, $\bar{N}\left(r, \frac{1}{G}\right)=S(r, G)$, then the identity, $\mathrm{P}+\mathrm{G} \equiv 1$ is impossible.

This theorem was proved by H.S. Gopalkrishna and S.S. Bhoosnumath [1] but here we improve this theorem removing the condition $\Theta(0, G)>0$. It is also interesting to note that here we use a different technique.
Proof. Suppose $\mathrm{P}+\underline{\mathrm{G}} \equiv 1$ holds.
Now $\quad \bar{N}_{(\mathrm{r}, \mathrm{P}) \leq} \bar{N}_{(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f})}$

$$
=\mathrm{S}(\mathrm{r}, \mathrm{f}) \text {, by hypothesis }
$$

Therefore $\bar{N}_{(\mathrm{r}, \mathrm{P})=\mathrm{S}(\mathrm{r}, \mathrm{P}) \text {. }}$
Because

Also

$$
\begin{gather*}
\mathrm{S}(\mathrm{r}, \mathrm{f})=\mathrm{S}(\mathrm{r}, \mathrm{P}) \tag{14}\\
\bar{N} \\
(\mathrm{r}, \mathrm{P})=\mathrm{S}(\mathrm{r}, \mathrm{f})=\mathrm{S}(\mathrm{r}, \mathrm{P})
\end{gather*}
$$

$=\mathrm{S}(\mathrm{r}, \mathrm{f})$, by hypothesis

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{P}\right)=S(r, f)=S(r, P) \tag{15}
\end{equation*}
$$

Therefore
Then by Lemma 3, we have

$$
\begin{align*}
& T(r, P)<\bar{N}\left(r, \frac{1}{P}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, P)+S(r, P, G) \\
& T(r, P)<\bar{N}\left(r, \frac{1}{G}\right)+S(r, G)+S(r, P, G), \tag{16}
\end{align*}
$$

by Lemma 4.
Since $P+G=1$ holds, is follows that $T(r, P) \sim T(r, G)$ and $S(r, G)=S(r, P)$.
By (16) and (17), we have
$T(r, G)<\bar{N}\left(r, \frac{1}{G}\right)+S(r, G) \operatorname{Or} T(r, G)<S(r, G) \quad$ by hypothesis.
This is a contradiction.
Thus, $\mathrm{P}+\mathrm{G} \equiv 1$ is impossible.

References:

Bhoosnurmath .Subhas .S., Ph.D. Thesis. Karnatak University , Dharwad, 1974.

Gopalkrishna. H. S. and Bhoosnurmath S. S., Deficiencies of differential polynomials, J. Mathematical Science, Vol-16-18,(1981-83), pp.97-102

Gopalkrishna H. S. and Bhoosnurmath S. S., Exceptional values of differential polynomials, Math .Cronical, Vol-8,1979,pp.73-82.

Gopalkrishna H. S. and Bhoosnurmath S. S. On the Deficiencies of Differential Polynomials, Karnatak University Journal,Science, VolXVIII, 1973.pp.329-335.

Hayman, W. K. and Miles, J. On the growth of meromorphic function and its derivatives, Complex Variables,12(1989),245.

Hayman, w. K., Meromorphic function, Oxford University Press,1964.

Indrajit Lahiri, Deficiencies of differencial polynomials, Indian J.pure appl. Math .,30 (5): 435-447, May 1999.

Singh, S. K. and Gopalakrishna, H. S., Exceptional values of meromorphic functions, Math, Ann.,191,1971,pp.121-142.

Subhas S. Bhoosnurmath and Chhaya M. Hombali, (1998): Fix points of certain differential polynomials,Proc.Ind.Acad.Sci.Vol. 108,No.2,Ju ne 1998,pp.121-131.

Indrajit Lahiri, Uniqueness of meromorphic functions with few poles, J. Ramanujan Math, Soc. Vol. -11 No. 2 1996. Pp. 175-186.

Singh, A.P. and Dukane, M.Phil Dissertation, Shivaji University, Kolhapur 1987.

Singh S.K. and Kulkarni V.N., Characteristic function of meromorphic function and its derivatives; Annales polonici Mathematici xxviii (1973). Pp 123-133.

