SYNTHESIS, CHARACTERIZATION AND COMPARATIVE STUDY OF SOME DIOXOMOLYBDENUM(VI) SCHIFF BASES COMPLEXES DERIVED FROM AROYL HYDRAZONE

M.A Katkar ${ }^{\text {a }}$, S.N. Rao ${ }^{\text {a }}$ and H.D. Juneja ${ }^{\text {b }}$

${ }^{a}$ Department of Chemistry, Priyadarshini Institute of Engg, and Technology, Hingna road, Nagpur-440019, India.
${ }^{\text {b }}$ Dept. of Chemistry, R.T.M. Nagpur University, Nagpur-440010, India.
Corresponding author E-mail : mrinalkatkarmak@yahoo.co.in
Tel- 07104-236463; Fax-07104-4236458

Abstract

Synthesis and characterization and comparative study of some novel dioxomolybdenum (VI) complexes having the general formula cis-[$\mathrm{MoO}_{2}(\mathrm{~L})\left(\right.$ solv)] (where $\mathrm{LH}_{2}=$ Schiff base derived from nicotinic acid hydrazide(NAH), benzoic acid hydrazide(BAH),salicylic acid hydrazide(SAH) and o-hydroxyacetophenone(hap) and salicyladehyde (sal) and solv=ethanol/ $\mathrm{H}_{2} \mathrm{O}$) are reported. The various Schiff base ligands are prepared by condensation of nicotinic acid hydrazide(NAH), benzoic acid hydrazide(BAH), salicylic acid hydrazide (SAH) with salicylaldehyde and substituted salicylaldehyde The cis-[$\left.\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{solv})\right]$ complexes are synthesized by reacting cis$\left[\mathrm{MoO}_{2}(\mathrm{acac})_{2}\right]$ and the ligands in ethanol according to the reaction,

$$
\Delta, 6 \mathrm{hrs}
$$

cis $-\mathrm{MoO}_{2}(\mathrm{acac})_{2}+\mathrm{LH}_{2} \underset{\mathrm{EtOH}}{-\rightarrow---\mathrm{O}}$ cis $-\left[\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})\right]+2 \mathrm{acach}$
Where $\mathrm{S}=$ Solvent.
These Schiff base ligands and their MoO_{2} complexes are characterized by elemental analysis, IR, NMR, UV-Vis and conductivity measurements, thermo gravimetric and powder X-ray diffraction analysis. The spectral studies suggest that the Schiff base ligands behave as dibasic tridentate ligands and co-ordinate through phenolic oxygen, azomethine nitrogen and enolic oxygen atoms. The complexes are found to be monomers, non-electrolytes, diamagnetic, six-coordinated, and crystalline and adopt triclinic crystal system with P type lattice. The sixth coordination site is occupied by a labile solvent molecule.

KEYWORDS: Schiff bases, hydrazones, Dioxomolybdenum complexes.

INTRODUCTION

Molybdenum complexes with Schiff base ligands have gained considerable importance due to their potential for biological and
physiological activity and industrial use [1-6]. Studies on complexes of oxomolybdenum(V) and dioxomolybdenum(VI) have opened up a new vista of research and analysis of biochemical significance. A great deal of work has been carried out in the synthesis and characterization of oxo-, dioxo-molybdenum complexes with one vacant site which might allow binding and displacement of various substrates [7]. The availability of such a labile site imparts catalytic property to these complexes. Dibasic tridentate Schiff base ligands around octahedral molybdenum (VI) provide suitable geometry with one vacant site for substrate binding. We have been interested in five co-ordinated octahedral cis- MoO_{2} complexes with non-symmetrical Schiff base having mixed sets of donor atoms in which the sixth co-ordination site is occupied by a solvent molecule. In view of this, we report the synthesis, structural characterization and comparative study of some cis-dioxomolybdenum(VI) complexes with Schiff bases derived from salicylaldehyde(sal) and ohydroxybenzophenone with nicotinic acid hydrazide(NAH), benzoic acid hydrazide(BAH) and salicylic acid hydrazide(SAH). These Schiff bases form mononuclear dioxomolybdenum(VI) complexes having the general formula $\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})$ (where $\mathrm{LH}_{2}=$ Schiff base represented as , H_{2} sal-NAH, H_{2} sal -BAH, $\mathrm{H}_{2} \mathrm{sal}$-SAH, H_{2} hbp-NAH, $\mathrm{H}_{2} \mathrm{hbp}$-BAH, $\mathrm{H}_{2} \mathrm{hbp}$-SAH). The ligands and the complexes are characterized by elemental analysis, molar conductance and spectroscopic (IR, ${ }^{1} \mathrm{HNMR}$ and UV-Vis), thermogravimetric (TGA) and X-ray diffraction analysis.

EXPERIMENTAL

MATERIALS

Ammonium molybdate(VI) tetrahydrate was obtained from Sisco Research Laboratory, (Mumbai, India). Salicylaldehyde, o-hydroxyacetophenone,o-hydroxypropiophenone, o-hydroxybenzophenone and benzoic acid hydrazide were procured from Lancaster synthesis Ltd. (UK). Ethanol and acetone used as solvent for synthesis were of high purity. MoO_{2} (acac) $)_{2}$ was prepared according to reported method.[8]

PHYSICAL MEASUREMENTS

Microanalysis of the Schiff base ligands and complexes were performed on a Perkin-Elmer(USA) 2400 Series II, elemental analyzer. The solutions of both ligands and complexes were prepared in HPLC grade DMF and electrical conductance measurements were performed using a Toshniwal Conductivity Bridge and a dip type cell calibrated with potassium chloride solutions. IR spectra for ligands and complexes were recorded in the range $400-4000 \mathrm{~cm}^{-1}$ on a Nicolet Magna IR 550 series II spectrophotometer using KBr pellets. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in DMSO-d ${ }^{6}$ on a Bruker DRX-300 instrument, using TMS as an internal standard. Electronic spectra were recorded for solutions of ligands and complexes in DMF on a Shimadzu UV 3101 PC spectrophotometer. The thermogravimetric analysis is done on Mettler Toledo (Star Switzerland SDTA/TGA 851) Instrument, to determine the decomposition temperature of complexes. The X ray diffraction patterns have been recorded in 2θ range from 13 to 64° on Philips (Holland) automated X-ray powder diffractometer. The operating target voltage was 35 kV , and the tube current was 20 mA . The scanning speed was $0.52 \theta / \mathrm{min}$. Radiation used was Cu-k wavelength $1.54056 \mathrm{~A}^{\circ}$ using monochromater for filtering β - radiations and reducing noise due to white radiations and also to increase resolution. The values of interplaner spacing (d) corresponding to Bragg reflections (20) were obtained and indexing and calculation of unit cell parameters were performed with the help of Powder-X Software.[9-11]

SYNTHESIS OF SCHIFF BASE LIGANDS (1a-6a)

An ethanolic solution of ketone/aldehyde such as salicyladehyde(sal); ohydroxybenzophenone (hbp) was mixed with an amine such as nicotinic acid hydrazide (NAH); benzoic acid hydrazide (BAH) and salicylic acid hydrazide (SAH) in 1: 1 molar ratio. The mixture was heated under reflux for $2-4 \mathrm{~h}$ and then cooled in an ice bath. The yellow crystals that
separated out were filtered, washed several times with ethanol and then dried in vacuo. The ligands obtained are $\mathrm{N}^{\prime}[(1 Z)-1-(2-$ hydroxyphenyl)phenylethylidene] nicotinoylhydrazine ($\mathrm{H}_{2} \mathrm{hbp}-\mathrm{NAH}(\mathbf{1 a})$, N'Salicylidene nicotinoylhydrazine(H_{2} sal-NAH) (2a), $\quad \mathrm{N}$ '(1Z)-1-(2hydroxyphenyl) phenylethylidene] benzoylhydrazine ($\mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH}$) ($\mathbf{3 a}$), N'Salicylidene benzoyllhydrazine (H_{2} sal-BAH) (4a), N'[(1Z)-1-(2hydroxyphenylphenyl)ethylidene] salicyloylhydrazine ($\mathrm{H}_{2} \mathrm{hbp}-\mathrm{SAH}$) (5a), N'Salicylidene salicyloylhydrazine (H_{2} sal-SAH) (6a).

SYNTHESIS OF MOLYBDENUM COMPLEXES (1b-6b)

Bis(acetylacetonato)dioxomolybdenum(VI) [cis-($\left.\mathrm{MoO}_{2}(\mathrm{acac})_{2}\right]$ undergoes ligand exchange with the Schiff bases in a suitable solvent and complexes of the type $\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})$ (where $\mathrm{LH}_{2}=$ Schiff base) are formed as follows : $\quad \Delta, 6 \mathrm{~h}$
$\mathrm{MoO}_{2}(\mathrm{acac})_{2}+\mathrm{LH}_{2} \quad---------\rightarrow \quad$ cis- $\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})+2 \mathrm{acacH}$

EtOH
Where, ' S ' is solvent
The cis-[$\mathrm{MoO}_{2}(\mathrm{~L})($ solv $\left.)\right]$ complexes synthesized by reacting cis$\left[\mathrm{MoO}_{2}(\mathrm{acac})_{2}\right]$ and the ligands $(\mathbf{1 a - 6 a})$ in ethanol are cis-[$\mathrm{MoO}_{2}\left(\mathrm{H}_{2} \mathrm{hbp}\right.$ $\mathrm{NAH})(\mathrm{EtOH})] \quad(\mathbf{1 b}), c i s-\left[\mathrm{MoO}_{2}(\mathrm{sal}-\mathrm{NAH})(\mathrm{EtOH})\right] \quad$ (2b), cis-[$\mathrm{MoO}_{2}\left(\mathrm{H}_{2} \mathrm{hbp}-\right.$ $\mathrm{BAH})(\mathrm{EtOH})] \quad(\mathbf{3 b}) \quad c i s-\left[\mathrm{MoO}_{2}(\mathrm{sal}-\mathrm{BAH})(\mathrm{EtOH})\right] \quad(\mathbf{4 b}), \quad c i s-\left[\mathrm{MoO}_{2}\left(\mathrm{H}_{2} \mathrm{hbp}-\right.\right.$ $\mathrm{SAH})(\mathrm{EtOH})](\mathbf{5 b})$ and $c i s-\left[\mathrm{MoO}_{2}(\right.$ sal- SAH$\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (6b).

RESULTS AND DISCUSSION

Bis(acetylacetonato) dioxomolybdenum(VI) [cis-MoO $\left.{ }_{2}(\mathrm{acac})_{2}\right]$, undergoes ligand exchange reaction with the Schiff bases (1a-6a) and complexes of the type $\left[\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})\right]$ (where $\mathrm{LH}_{2}=$ Schiff base) are formed as follows:
cis $-\mathrm{MoO}_{2}(\mathrm{acac})_{2}+\mathrm{LH}_{2} \rightarrow$ cis $-\left[\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})\right]+2 \mathrm{acacH}$
The analytical data presented in Table 1 show that the Schiff bases behave as dibasic, tridentate ligands, hence complete replacement of the
bidentate acetylactone occurs under the reaction conditions and the solvent molecule occupies the sixth coordination position. The analytical data further support the formulation of the complexes as cis- $\left[\mathrm{MoO}_{2}\right.$ (L)(S)]. The structures for ligands (1a-6a)and for complexes ($\mathbf{1 b} \mathbf{b} \mathbf{- 6 b}$)are shown in Figure 1 and 2. The molar conductance of the complexes in DMF is found to be in the ran ge $1.97-6.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1} \mathrm{~mol}^{-1}$ which indicates that they are all non-electrolytes. The ligands were tested separately for conductance and none of them indicated any measurable conductance.

IR SPECTRA

The IR spectra of the Schiff base ligands reveal the presence of $v \mathrm{NH}$ and $\mathrm{vC}=\mathrm{O}$ groups which are found to be absent in their corresponding MoO_{2} complexes and a new $\mathrm{C}-\mathrm{O}$ stetch was found, giving $>\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}<$ framework. This suggests occurrence of keto-imino tautomerisation of the ligand during complexation. The presence of two prominent bands in the complexes ($\mathbf{1 b} \mathbf{b} \mathbf{6 b}$) in the regions $874-948 \mathrm{~cm}^{-1}$ and $848-913 \mathrm{~cm}^{-1}$ due to the $v_{\text {sym }}(\mathrm{O}=\mathrm{Mo}=\mathrm{O})$ and $v_{\text {asym }}(\mathrm{O}=\mathrm{Mo}=\mathrm{O})$ respectively, confirms the presence of cis- $\mathrm{MoO}_{2}{ }^{2+}$ centre.[12-15] It has been reported before that the $\mathrm{MoO}_{2}{ }^{2+}$ moiety prefers to form cis configuration due to the maximum utilization of the d-orbitals for the chemical bonding.[16-18] Further, the complexes ($\mathbf{1 b} \mathbf{- 4 b}$) exhibit an additional band in the region 3066-3453 cm^{-1} which is attributed to voH of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ molecule coordinated to the sixth site[19]. The complexes ($\mathbf{5 b}$ and $\mathbf{6 b}$) exhibit a band in the range $1604-1624 \mathrm{~cm}^{-1}$ due to $ข$ он of coordinated $\mathrm{H}_{2} \mathrm{O}$ molecule to the sixth site.

Thus, the Schiff bases are found to be dibasic tridentate ligands having $-\mathrm{N}, \mathrm{O}, \mathrm{O}$ donor sites and their MoO_{2} complexes show octahedral geometry, having general formula $\left[\mathrm{MoO}_{2}(\mathrm{~L})(\mathrm{S})\right]$, the sixth site being occupied by the solvent molecule.

The IR spectra of complexes (Table 2) also reveal that both symmetric and asymmetric stretching of cis $-\mathrm{MoO}_{2}$ in the complex formed with $\left(\mathrm{H}_{2} \mathrm{hbp}-\mathrm{NAH}\right)(\mathbf{1 b})$ occur at a relatively higher energy (904 and 948 cm^{-1}) than the corresponding (H_{2} sal-NAH) (2b), (913 and 920 cm^{-1}). Similarly, both symmetric and asymmetric stretching of cis- MoO_{2} in the complex formed with ($\left.\mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH}\right)(\mathbf{3 b})$; ($\left.\mathrm{H}_{2} \mathrm{hbp}-\mathrm{SAH}\right)(\mathbf{5 b})$ occur at a relatively higher energy (899 and $923 \mathrm{~cm}^{-1}$); (893 and $943 \mathrm{~cm}^{-1}$) respectively, than the corresponding (H_{2} sal-BAH) (4b), (914 and $895 \mathrm{~cm}^{-}$ ${ }^{1}$) and (H_{2} sal-SAH) (6b), (891 and $910 \mathrm{~cm}^{-1}$) respectively. Moreover, the difference between symmetric and asymmetric frequencies of $\mathrm{O}=\mathrm{Mo}=\mathrm{O}$ is also less $\left(\Delta \nu=10-25 \mathrm{~cm}^{-1}\right)$ for complexes $(\mathbf{2 b}, \mathbf{4 b}, \mathbf{6 b})$ whereas this difference is more $\left(\Delta \nu=30-50 \mathrm{~cm}^{-1}\right)$ for complex ($\left.\mathbf{1} \mathbf{b} ; \mathbf{3 b} ; \mathbf{5 b}\right)$. The differences in stretching frequencies of $\mathrm{O}=\mathrm{Mo}=\mathrm{O}$ of the cis $-\mathrm{MoO}_{2}$ moiety may be attributed to the progressively decreasing steric and electron withdrawing character of benzyl and -H on azomethine carbon in the complexes ($\mathbf{1 b} \mathbf{j} \mathbf{3 b} ; \mathbf{5 b})$ and $(\mathbf{2 b}, \mathbf{4 b}, \mathbf{6 b})$, respectively.

Further, appearance of $v(\mathrm{Mo}=\mathrm{O})$ symmetric and asymmetric peaks in complexes ($\mathbf{1 b}$ and $\mathbf{2 b}$) occur at relatively high energy as compared to $(\mathbf{3 b} \mathbf{- 6 b})$. This may be due to the presence of heterocyclic ring of nicotinic acid hydrazide (NAH) which is probably exerting distant effect on $\mathrm{O}=\mathrm{Mo}=\mathrm{O}$ bonds .

ELECTRONIC SPECTRA

In their electronic spectra, the ligands (1a-6a) showed peaks in the region 295-390 nm which can be attributed to intra ligand transitions. (Table-1) Similarly, the cis- MoO_{2} complexes displayed a broad band in the range $390-410 \mathrm{~nm}$ which could be assigned to the ligand metal charge transfer transition (LMCT), between the lowest empty d^{0} orbital (dп) of molybdenum and the highest occupied ligand molecular orbital (p $\pi)$ i.e. $\mathrm{Mo}(\mathrm{d} \pi) \leftarrow \mathrm{O}(р \pi)$ transition. Several of the MoO_{2} complexes showed

LMCT band in this range [20, 21]. As obivious for $4 d^{\circ}$ system, no d-d transitions were expected in all the above complexes.

It has been observed that there is no significant effect on $\operatorname{Mo}(\mathrm{d} \pi) \leftarrow$ $\mathrm{O}(р \pi)$ transition due to substitutional changes on hydrazide moiety (NAH, BAH and SAH). On the other hand, the substituent present on azomethine carbon is found to exert a certain influence on the LMCT energy. In case of $-\mathrm{C}_{6} \mathrm{H}_{5}$ on azomethine carbon, an average increase of energy by 15-20 nm was observed in comparison to unsubstituted azomethine carbon ($\mathbf{2 b}, \mathbf{4 b}, \mathbf{6 b}$) .

It appears that the energy of Mo (dп) level is progressively moved away from $\mathrm{O}(р \pi)$ orbital as the electron donating character of the substituent ($-\mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}$) increases as shown below in the figure 3.

Figure:3 Predicted Influence of substituent's on energy level of Mo(d I) orbital

${ }^{1} \mathbf{H}$ NMR SPECTRA

The IR data is further supported by the ${ }^{1} \mathrm{H}$ NMR spectral data (Table2). The ${ }^{1} \mathrm{H}$ NMR spectral data for the ligands (1a-6a) exhibit signals due to the phenolic OH protons and NH protons. The absence of these signals in the spectra of the complexes indicate coordination through the phenolic oxygen and enolization of the $-\mathrm{C}=\mathrm{O}$ of the aroyl keto group and consequent deprotonation. The ethanol coordination to molybdenum in
complexes ($\mathbf{1 b} \mathbf{-} \mathbf{4 b}$) is supported by the presence of the singlet, triplet and quartet of $\mathrm{OH}, \mathrm{CH}_{3}$ and CH_{2} at 11.1-12.93, 1.06-1.42 and 2.69-3.70 ppm respectively. The $\mathrm{H}_{2} \mathrm{O}$ coordination to molybdenum centre in complexes ($\mathbf{5 b} \mathbf{- 6} \mathbf{b}$) is supported by the absence of the singlet, triplet and quartet of $\mathrm{OH}, \mathrm{CH}_{3}$ and CH_{2}, respectively. Due to rapid exchange of protons in the coordinated $\mathrm{H}_{2} \mathrm{O}$, the signal corresponding to $\mathrm{H}_{2} \mathrm{O}$ could not be observed.

THERMOGRAVIMETRIC ANALYSIS

Thermal behavior of the complexes ($\mathbf{1 b} \mathbf{b} \mathbf{6 b}$) was studied in the temperature range $30-800^{\circ} \mathrm{C}$, with increase of $10^{\circ} \mathrm{C} / \mathrm{min}$. The TG curves exhibit weight loss in four steps corresponding to the release of solvent molecule, two stage decomposition of Schiff base ligands and finally the formation of molybdenum trioxide (Table 3). Complexes (1b, 2b, 3b and $4 \mathrm{~b})$ undergo a rapid weight loss from $80-102^{\circ} \mathrm{C}$ due to release of coordinated $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ molecule and in the complexes (5 b and 6 b) the release of the coordinated $\mathrm{H}_{2} \mathrm{O}$ occurs in the temperature range 80$100^{\circ} \mathrm{C}$.

The Schiff base ligands decompose in two steps in the temperature range $210-770^{\circ} \mathrm{C}$, the first step corresponding to significant weight loss and the second showing a gradual weight loss. The \% weight loss value of the final residues was in accordance with that of molybdenum trioxide for all the complexes.

X-RAY POWDER DIFFRACTION ANALYSIS

The XRD data was obtained using Powder-X Software. The single crystals of complexes in DMF could not be obtained; hence, XRD patterns of the same are studied and reported. All the complexes were found to be crystalline and their X-ray powder diffractograms were
collected. The lattice parameters and Miller's indices were computed. The indexing and calculation of unit cell parameters are performed with the help of Powder-X Software. The calculated and the observed 2θ value, the relative intensity, the inter-planar distance along with Miller's indices for corresponding angles are tabulated for the complexes.

On the basis of X-ray powder patterns and unit cell refinements, it is found that all the complexes adopt triclinic crystal system with P type lattice space group. The hkl indexing and space identification was carried out and complexes ($\mathbf{1 b} \mathbf{b} \mathbf{6 b}$) adopt distorted octahedral geometry with triclinic space grouping The lattice constants were calculated, complex (1b) - $a=7.9 \AA ; b=10.1 \AA ; c=10.35 \AA$ and $\alpha=80^{\circ}, \beta=79^{\circ} \gamma=$ $\left.76^{\circ} ; \mathbf{(2 b}\right)-\mathbf{a}=7.99 \AA ; \mathbf{b}=10.1 \AA ; c=10.42 \AA$ and $\alpha=81^{\circ} ; \beta=80^{\circ}$; $\gamma=79.2^{\circ} ;(\mathbf{4 b})-\mathrm{a}=8 \AA \mathrm{~b}=10.2 \AA ; \mathrm{c}=10.35 \AA$ and $\alpha=80.9^{\circ}, \beta=$ $79.7^{\circ}, \gamma=78.1^{\circ}(\mathbf{6 b})-\mathrm{a}=7.88 \AA \mathrm{~b}=10.45 \AA ; \mathrm{c}=10.1 \AA$ and $\alpha=$ $81.5^{\circ}, \beta=78.6^{\circ}, \gamma=78{ }^{\circ}$. We have earlier reported the single crystal structure of cis $-\mathrm{MoO}_{2}(\mathrm{~L})$ (Solv), where $\mathrm{L}=$ salicylaldehyde salicyloyl hydrazide) which was found to be triclinic with P type space group[22].

Thus, on the basis of elemental analysis, IR and TGA, all the complexes have their sixth coordinating site occupied by a solvent molecule either $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ or $\mathrm{H}_{2} \mathrm{O}$. The Schiff base ligands coordinate through azomethine nitrogen, phenolic and enolic oxygen atoms $(-\mathrm{N}, \mathrm{O}$, O) confirming to distorted octahedral geometry.

CONCLUSIONS

It is evident from the above data, the Schiff base ligands behave as dibasic tridentate ligands and co-ordinate through phenolic oxygen, azomethine nitrogen and enolic oxygen atoms. The complexes are found to be monomers, non-electrolytes, diamagnetic and six co-ordinated. The complexes adopt triclinic crystal system with P type lattice space group. The sixth site in the complex is occupied by an ethanol/water group, which allows the binding and displacement of several substrate
molecules during their use as a catalyst in the oxidation reactions. The use of the complexes of this type as catalyst for epoxidation of olefins is studied and reported elsewhere [23].

REFERENCES

Shailendra N.B, Gonzalez Garza M.T., Cruz-Vega D.E., Castro Garza J.C., Saleem K., Naqui F., Maurya M.R. and Azam A., (2002), Bioorg. \& Medicinal Chem. Lett., 12 , (6) , 869-871.

Rana A., Dinda R., Sengupta P., Ghosh S. and Falvello L.R.,Synthsis , (2002), Polyhedron, 21,1023-1030 .

Owaik T.G., Jerzykiewicz L., Sofczak J. aw.M and Kowski Zio J.J., (2003), Inorg. Chim. Acta, 356, 387-391.

Ambrazaik K., Pelech R., Milchert E., Dziemobowska T. and Rozwadowski Z., (2004), J. Mol. Catal. A- Chemical, 211, 9-16.

Valente A.A., Petrovski E., Branco L.C., Afonso C., Pillinger M., Lopes Romao A.D., Nunes C.D. and Goncalves I.S. ,(2004), J. Mol. Catal. A- Chemical, 218 , 5-11.

Nunes C.D., Pillinger M., Valente A.A., Lopes A.D. and Goncalves I.S., (2003), Inorg. Chem. Comm., 6, 1228-1233.

Rao S. N., Mishra D. D., Maurya R.C., and Rao N. N., (1995), Bull. Chem. Soc. Jpn., 68, 1589-1592.

Chen G.J.J., McDonald J-W and Neuton W.E., (1976), Inorg.Chem., 15 ,pp.2612-2615.

Syed L.E. and Iskander M.F., (1971),J. Inorg. Nucl. Chem., 33, 435-443.
W.H. Bragg and W.L. Bragg, (1933) "The Crystalline State", Bell, London.

Bunn, (1945) "Chemical Crystallography", Oxford University Press.
Azaroff and Buerger, (1958) ""The powder Method", McGraw Hill, London.

Rao S.N., Munshi K.N., and Rao N.N., (1999), J.Mol.Catal. A- Chem., 145 , 203-210.

Rao S.N., Munshi K.N., Rao N.N., (2000), J Mol. Catal. A- Chem.,156, 205-211

Rao S.N., Kathale N., Munshi K.N., Rao N.N.,(2007), Inorg. Chim Acta., 360, 4010-4016.
N. Kathale, Rao S.N., Munshi K.N., Rao N.N., (2001), 31, 859-871.

Rao S.N., Jaiswal M.N., Mishra D.D., Maurya R.C. and Rao N.N., (1993),Polyhedron, 12, 2045-2050.

Pickett C., Kumar S., Vella P.A. and Zubieta J., (1982).Inorg. Chem., 21, , 908-916.

Syamal A., Maurya M.R., (1986), Transition Met. Chem., 11, 255-258.
S.N. Rao, D. D. Mishra, R.C. Maurya, and N. N. Rao, (1995), Synth. React. Inorg. Met.-Org. Chem., 25, 437-449.

Maurya R. C., Mishra D. D., Rao S. N., Verma R. and Rao N. N.,(1997) ,Indian J. Chem., 36A, , 599-601.

Rao S.N., Munshi K.N. ,Rao N.N., Badbhade M.M. and Suresh E., (1999), Polyhedron, 18 ,pp.2491-2497.
M. A. Katkar, S. N. Rao and H. D. Juneja, RSC Advances, 2, 8071-8078, 2012.

Table 1: Analytical Data and Electronic Spectral Data of Ligands (1a-6a) and Complexes (1b-6b)

$\begin{aligned} & \text { Sr. } \\ & \text { no. } \end{aligned}$	Ligands/ complexes	Color	F.W.	Yield (\%)	$\begin{aligned} & \text { m.p } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Elemental Analysis(\%): Calculated (found)			$\begin{gathered} \text { UV-Vis } \\ \boldsymbol{A} \operatorname{nm}\left(\in \mathbf{M}^{-1} \mathbf{c m}^{-}\right. \\ \left.1^{-}\right) \end{gathered}$
						C	H	N	
1a	$\mathrm{H}_{2} \mathrm{hbp}-\mathrm{NAH}$; $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	Yellow	317	87	190	$\begin{gathered} 71.92 \\ (71.90) \\ \hline \end{gathered}$	$\begin{gathered} 4.73 \\ (4.75) \\ \hline \end{gathered}$	$\begin{gathered} 13.24 \\ (13.25) \\ \hline \end{gathered}$	$\begin{aligned} & 295\left(1.7 \times 10^{4}\right) \\ & 330\left(1.7 \times 10^{4}\right) \\ & \hline \end{aligned}$
1b	$\begin{aligned} & \mathrm{MoO}_{2}(\mathrm{hbp}- \\ & \mathrm{NAH}) ; \\ & \mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \end{aligned}$	Green	488.94	89	285	$\begin{gathered} 51.54 \\ (51.24) \end{gathered}$	$\begin{gathered} 3.88 \\ (4.02) \end{gathered}$	$\begin{gathered} 8.89 \\ (8.79) \end{gathered}$	405 (7.5×103)
2a	H_{2} sal-NAH; $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	Yellow	241	85	160	$\begin{gathered} \hline 64.73 \\ (65.83) \\ \hline \end{gathered}$	$\begin{gathered} 4.56 \\ (4.32) \\ \hline \end{gathered}$	$\begin{gathered} 17.42 \\ (17.46) \\ \hline \end{gathered}$	$\begin{aligned} & 295\left(2.1 \times 10^{4}\right) \\ & 330\left(2.0 \times 10^{4}\right) \\ & \hline \end{aligned}$
2b	$\begin{aligned} & \mathrm{MoO}_{2} \text { (sal- } \\ & \text { NAH); } \\ & \mathrm{MoC}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \end{aligned}$	Green	412.94	84	210	$\begin{aligned} & 43.58 \\ & (43.97) \end{aligned}$	$\begin{gathered} 3.63 \\ (3.65) \end{gathered}$	$\begin{aligned} & 10.17 \\ & (10.2) \end{aligned}$	410(0.3×104)
3a	$\mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH}$; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	Cream	316	82.87	220	$\begin{gathered} 75.94 \\ (75.76) \\ \hline \end{gathered}$	$\begin{gathered} 5.97 \\ (5.66) \end{gathered}$	$\begin{aligned} & 10.44 \\ & (9.47) \\ & \hline \end{aligned}$	$\begin{aligned} & 300\left(1.9 \times 10^{4}\right) \\ & 350\left(1.9 \times 10^{4}\right) \\ & \hline \end{aligned}$
3b	$\begin{aligned} & \mathrm{MoO}_{2}(\mathrm{hbp}- \\ & \mathrm{BAH}) ; \\ & \mathrm{MoC}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \\ & \hline \end{aligned}$	Green	487.94	86	255	$\begin{gathered} 45.08 \\ (45.82) \end{gathered}$	$\begin{gathered} 4.09 \\ (4.12) \end{gathered}$	$\begin{aligned} & 5.73 \\ & (5.8) \end{aligned}$	405 (1.9x104)
4a	$\begin{aligned} & \mathrm{H}_{2} \text { sal-BAH; } \\ & \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \\ & \hline \end{aligned}$	Cream	240	82.48	184	$\begin{gathered} 70.0 \\ (69.82) \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \\ (4.78) \\ \hline \end{gathered}$	$\begin{gathered} 11.66 \\ (10.79) \\ \hline \end{gathered}$	$\begin{aligned} & 280\left(1.6 \times 10^{4}\right) \\ & 330\left(2.9 \times 10^{4}\right) \\ & \hline \end{aligned}$
4b	$\begin{aligned} & \mathrm{MoO}_{2} \text { (sal- } \\ & \mathrm{BAH}) ; \\ & \mathrm{MoC}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \\ & \hline \end{aligned}$	Green	411.94	89	289	$\begin{aligned} & 46.60 \\ & (46.12) \end{aligned}$	$\begin{gathered} 3.88 \\ (3.87) \end{gathered}$	$\begin{gathered} 6.79 \\ (6.95) \end{gathered}$	410 (0.3x104)
5a	$\mathrm{H}_{2} \mathrm{hbp}-\mathrm{SAH}$; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	Cream	332	83.16	189	$\begin{gathered} \hline 71.28 \\ (71.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.81 \\ (4.44) \\ \hline \end{gathered}$	$\begin{gathered} 8.43 \\ (8.55) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 300\left(1.0 \times 10^{4}\right) \\ & 360\left(1.0 \times 10^{4}\right) \\ & \hline \end{aligned}$
5b	MoO_{2} (hbpSAH); $\mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$	Green	475.94	86	300	$\begin{gathered} 50.42 \\ (50.35) \end{gathered}$	$\begin{array}{r} \hline 3.36 \\ (3.51) \\ \hline \end{array}$	$\begin{gathered} 5.88 \\ (5.98) \end{gathered}$	405(1.0×104)
6a	H_{2} sal-SAH; $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$	Yellow	256	89	182	$\begin{gathered} 65.6 \\ (65.83) \\ \hline \end{gathered}$	$\begin{gathered} 4.68 \\ (4.32) \\ \hline \end{gathered}$	$\begin{gathered} 5.46 \\ (5.11) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 297\left(1.7 \times 10^{4}\right) \\ & 335\left(2.2 \times 10^{4}\right) \\ & \hline \end{aligned}$
6b	$\begin{aligned} & \mathrm{MoO}_{2}(\text { sal- } \\ & \mathrm{SAH}) ; \\ & \mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \end{aligned}$	Orange	399.94	86	254	$\begin{aligned} & 42.00 \\ & (41.90) \end{aligned}$	$\begin{gathered} 3.00 \\ (2.65) \end{gathered}$	$\begin{gathered} 7.00 \\ (6.95) \end{gathered}$	$\begin{gathered} 410 \\ \left(1.95 \times 10^{4}\right) \end{gathered}$

Table 2: IR and ${ }^{1} H$ NMR Spectral Data of Ligands (1a-6a) and

Complexes (1b-6b)

Sr	Ligands/	Infrared Data (cm^{-1})						ס, ppm
No	Complexes	$\begin{aligned} & \mathrm{v}(\mathbf{O} \\ & \mathrm{H}) \end{aligned}$	$\begin{gathered} \text { v(NH } \\ \text {) } \end{gathered}$	$v(\mathbf{C}=\mathbf{N})$	$\begin{gathered} v(\mathbf{C}=\mathbf{0} \\) \end{gathered}$	$\begin{aligned} & v(\mathrm{C}- \\ & \mathrm{O}) \end{aligned}$	$\begin{gathered} v(\text { Mo }=\mathbf{O} \\ \text {) } \end{gathered}$	
1a	$\mathrm{H}_{2} \mathrm{hbp}-$ NAH; $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\begin{gathered} 332 \\ 2 \end{gathered}$	3021	1660	1672	------	------	$\begin{aligned} & \text { 11.70(s,OH,1H); } \\ & 12.09(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 6.97- \\ & 8.02 \mathrm{~m}, \mathrm{ArH}, 13 \mathrm{H}) . \end{aligned}$
1b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{NAH}) ; \\ \mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N} \\ { }_{3} \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 321 \\ 1 \end{gathered}$	---	$\begin{aligned} & 1625 \\ & 1594 \end{aligned}$	------	1156	$\begin{aligned} & 948 \\ & 904 \end{aligned}$	$\begin{aligned} & 11.70(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 1.28-1.42(\mathrm{q},- \\ & \left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 2.12- \\ & 2.19\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) ; 6.97- \\ & 8.02 \mathrm{~m}, \mathrm{ArH}, 13 \mathrm{H}) . \end{aligned}$
2a	H_{2} sal-NAH; $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\begin{gathered} 325 \\ 0 \end{gathered}$	3100	1580	1608	------	------	$\begin{aligned} & 11.43(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; \\ & 12.20(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; \\ & 8.3(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 6.87- \\ & 8.75(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H}) . \\ & \hline \end{aligned}$
2b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{NAH}) \\ \mathrm{MoC}_{15} \mathrm{H}_{15} \mathrm{~N} \\ 3 \mathrm{O}_{5} \end{gathered}$	$\begin{gathered} 331 \\ 5 \end{gathered}$	--	$\begin{aligned} & 1560 \\ & 1535 \end{aligned}$	------	1151	$\begin{aligned} & 920 \\ & 913 \end{aligned}$	$\begin{aligned} & 12.91(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; \\ & 8.34(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) 1.06-1.17(\mathrm{q},- \\ & \left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 3.16-3.31\left(\mathrm{t}, \mathrm{CH}_{2}\right. \\ & , 2 \mathrm{H}) ; 6.87-8.75(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H}) . \end{aligned}$
3a	$\mathrm{H}_{2} \mathrm{hbp}-$ BAH; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 354 \\ 0 \end{gathered}$	3063	1608	1652	$-------$ --	-------	$\begin{aligned} & 10.92(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 13.1(\mathrm{~s}, \mathrm{NH}, 1 \\ & \mathrm{H}) ; 7.08-8.03(\mathrm{~m}, \mathrm{ArH}, 14 \mathrm{H}) . \end{aligned}$
3b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{BAH}) ; \\ \mathrm{MoC}_{22} \mathrm{H}_{20} \mathrm{~N} \\ 2 \mathrm{O}_{5} \end{gathered}$	$\begin{gathered} 306 \\ 6 \end{gathered}$	--	$\begin{aligned} & 1595 \\ & 1553 \end{aligned}$	-	1177	$\begin{aligned} & 923 \\ & 899 \end{aligned}$	$\begin{aligned} & \text { 11.1(s,OH,1H); 1.21-1.29(q,- } \\ & \left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 2.56-2.57(\mathrm{t},- \\ & \left.\mathrm{CH}_{2}, 3 \mathrm{H}\right) ; 7.01- \\ & 8.05(\mathrm{~m}, \mathrm{ArH}, 14 \mathrm{H}) . \end{aligned}$
4a	H_{2} sal-BAH; $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 363 \\ 1 \end{gathered}$	3260	1622	1672	--	-------	$11.58(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 11.82(\mathrm{~s}, \mathrm{NH}, 1$ H); 8.53(s, CH,1H); 6.86- $8.5(\mathrm{~m}, \mathrm{ArH}, 9 \mathrm{H})$.
4b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{BAH}) ; \\ \mathrm{MoC}_{16} \mathrm{H}_{16} \mathrm{~N} \\ 2 \mathrm{O}_{5} \end{gathered}$	$\begin{gathered} 320 \\ 0 \end{gathered}$	--	$\begin{aligned} & 1612 \\ & 1556 \end{aligned}$	--	1153	$\begin{aligned} & 914 \\ & 895 \end{aligned}$	$\begin{aligned} & 11.58(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; \\ & 8.53(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 1.37-1.41(\mathrm{q},- \\ & \left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 3.38-3.44(\mathrm{t},- \\ & \left.\mathrm{CH}_{2}, 3 \mathrm{H}\right) ; 6.94- \\ & 8.12(\mathrm{~m}, \mathrm{ArH}, 9 \mathrm{H}) . \end{aligned}$
5a	$\begin{gathered} \mathrm{H}_{2} \text { hbp-SAH } \\ ; \\ \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \end{gathered}$	$\begin{gathered} 334 \\ 3 \\ 332 \\ 0 \end{gathered}$	3060	1600	1648	---	---	$\begin{aligned} & 11.52(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H}) ; \\ & 10.4(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 7.54-8.28(\mathrm{~m} \\ & \text {,ArH, 13H). } \end{aligned}$
5b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{SAH}) ; \\ \mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N} \\ 2 \mathrm{O}_{6} \end{gathered}$	$\begin{gathered} \hline 334 \\ 3 \\ 162 \\ 4 \\ \hline \end{gathered}$	----	$\begin{gathered} 1595 . \\ 01 \\ 1604 . \\ 45 \\ \hline \end{gathered}$	--	1248	$\begin{gathered} \hline 943 ; 8 \\ 93 \end{gathered}$	$\begin{aligned} & 11.5(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 1.4- \\ & 1.64\left(\mathrm{q}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 2,81- \\ & 2.98\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) ; 7.4-7.81(\mathrm{~m} \\ & \text {, } \mathrm{ArH}, 13 \mathrm{H}) . \end{aligned}$
6a	$\begin{aligned} & \mathrm{H}_{2} \text { sal-SAH; } \\ & \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} 329 \\ 0 \\ 320 \\ 0 \end{gathered}$	3050	1618	1655	----	----	$\begin{aligned} & 11.97(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H}) ; \\ & 11.40(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 8.6 \\ & (\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) 6.8-7.93(\mathrm{~m}, \mathrm{ArH} \\ & , 8 \mathrm{H}) \end{aligned}$
6b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{SAH}) ; \\ \mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N} \\ 2 \mathrm{O}_{6} \\ \hline \end{gathered}$	$\begin{gathered} 329 \\ 0 \\ 162 \\ 4 \end{gathered}$	------	$\begin{aligned} & 1601 \\ & 1552 \end{aligned}$	------	1246	$\begin{aligned} & 891 \\ & 910 \end{aligned}$	$\begin{aligned} & 11.31(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; \\ & 8.68(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 6.90-8.68(\\ & \mathrm{m}, \mathrm{ArH}, 8 \mathrm{H}) \end{aligned}$

Table 3: Thermal Decomposition Data of complexes ($\mathbf{1 b} \mathbf{b} \mathbf{- 6 b}$)

$\begin{gathered} \hline \mathbf{S r} \\ \dot{n} \\ \mathbf{o} . \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	\% Weight Loss											
		1b$\mathrm{MoO}_{\mathbf{2}}(\mathrm{hbp}-$$\mathrm{NAH})$$\mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N}$$\mathbf{3 O}_{5}$		$\begin{gathered} 2 b \\ \mathrm{MoO}_{2}(\text { (Sal- } \\ \left.\mathrm{NAH}^{2}\right) \\ \mathrm{MoC}_{15 \mathrm{H}_{15}} \\ \mathrm{~N}_{3} \mathrm{O}_{5} \\ \hline \end{gathered}$		3b$\mathrm{MoO}_{2}(\mathrm{hbp}-$$\left.\mathrm{BAH}^{2}\right)$$\mathrm{MoC}_{22} \mathrm{H}_{20}$$\mathrm{~N}_{2} \mathbf{O}_{5}$		$\begin{gathered} \text { 4b } \\ \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{BAH}^{2} \text {) } \\ \mathrm{MoC}_{16} \mathrm{H}_{16} \\ \mathrm{~N}_{2} \mathrm{O}_{5} \\ \hline \end{gathered}$		$5 b$$\mathrm{MoO}_{2}(\mathrm{hbp}-$$\mathrm{SAH})$$\mathrm{MoC}_{20} \mathbf{H}_{16}$$\mathbf{N}_{2} \mathrm{O}_{6}$		$\mathbf{6 b}$$\mathrm{MoO}_{2}$ (sal-$\left.\mathrm{SAH}^{2}\right)$$\mathrm{MoC}_{14 \mathbf{H}_{12}}$$\mathrm{~N}_{2} \mathrm{O}_{6}$	
		$\begin{gathered} \hline \text { Cal } \\ \text { c. } \\ \hline \end{gathered}$	Obs	$\begin{gathered} \mathrm{Cal} \\ \text { c. } \end{gathered}$	Obs	$\begin{gathered} \mathrm{Cal} \\ \text { c. } \end{gathered}$	Obs	$\begin{gathered} \mathrm{Cal} \\ \text { c. } \end{gathered}$	Obs	$\begin{gathered} \mathrm{Cal} \\ \text { c. } \end{gathered}$	Obs	$\begin{aligned} & \mathrm{Cal} \\ & \text { c. } \end{aligned}$	Obs
1	$\begin{aligned} & 80- \\ & 102 \end{aligned}$	$\begin{gathered} 9.4 \\ 0 \end{gathered}$	$\begin{gathered} 9.2 \\ 5 \end{gathered}$	9.40	9.25	9.42	8.73	$\begin{gathered} 11.1 \\ 6 \end{gathered}$	$\begin{gathered} 10.8 \\ 8 \end{gathered}$	3.70	3.52	$\begin{gathered} 4.5 \\ 0 \end{gathered}$	4.20
2	$\begin{gathered} 296 \\ - \\ 420 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 44 . \\ & 02 \end{aligned}$	$\begin{aligned} & 43 . \\ & 82 \end{aligned}$	$\begin{gathered} 44.0 \\ 2 \end{gathered}$	43.8	$\begin{gathered} 44.1 \\ 2 \end{gathered}$	$\begin{gathered} 44.4 \\ 5 \end{gathered}$	$\begin{gathered} 32.5 \\ 0 \end{gathered}$	33.2	$\begin{gathered} 42.5 \\ 8 \end{gathered}$	42	$\begin{aligned} & 31 . \\ & 15 \end{aligned}$	$\begin{gathered} 32.1 \\ 5 \end{gathered}$
3	$\begin{gathered} 420 \\ - \\ 770 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & 48 . \\ & 39 \end{aligned}$	$\begin{gathered} 47 . \\ 71 \end{gathered}$	$\begin{gathered} 48.3 \\ 9 \end{gathered}$	$\begin{gathered} 47.6 \\ 2 \end{gathered}$	$\begin{gathered} 48.1 \\ 8 \end{gathered}$	$\begin{gathered} 48.7 \\ 2 \end{gathered}$	$\begin{gathered} 48.1 \\ 8 \end{gathered}$	$\begin{gathered} 47.4 \\ 7 \end{gathered}$	$\begin{gathered} 51.3 \\ 4 \end{gathered}$	$\begin{gathered} 50.5 \\ 0 \end{gathered}$	$\begin{aligned} & 51 . \\ & 34 \end{aligned}$	$\begin{gathered} 52.1 \\ 0 \end{gathered}$

T_{d} - Decomposition temperature

Fig1: A- Proposed structure for 1a and 2a 1b and 2b

B- Proposed structure for $3 a$ and $4 a$
3b and 4b
C- Proposed structure for 5 a and 6a
5b and 6b

Fig 2: E- Proposed structure for

G- Proposed structure for

Table 1 : Analytical Data of Ligands (1a-6a) and Complexes (1b-6b)

$\begin{gathered} \text { Sr } \\ \text { no } \end{gathered}$	Ligands/ complexes	Color	F.W.	$\begin{gathered} \text { Yiel } \\ \text { d } \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \mathbf{m} . \\ \mathbf{p} \\ \mathbf{l}^{\circ} \mathrm{C} \\ \mathbf{1} \end{gathered}$	Elemental Analysis(\%): Calculated (found)		
						C	H	N
1a	$\mathrm{H}_{2} \mathrm{hbp}-$ $\mathrm{NAH} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\begin{gathered} \text { Yello } \\ \text { w } \end{gathered}$	317	87	$\begin{gathered} 19 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 71.92 ;(71 . \\ 90) \\ \hline \end{gathered}$	$\begin{gathered} \text { 4.73;(4.7 } \\ 5) \\ \hline \end{gathered}$	$\begin{gathered} 13.24 ;(13 . \\ 25) \\ \hline \end{gathered}$
1b	$\begin{aligned} & \mathrm{MoO}_{2}(\mathrm{hbp}- \\ & \mathrm{NAH}) ; \mathrm{MoC}_{21} \mathrm{H}_{19} \\ & \mathrm{~N}_{3} \mathrm{O}_{5} \\ & \hline \end{aligned}$	Green	$\begin{gathered} 488.9 \\ 4 \end{gathered}$	89	$\begin{gathered} 28 \\ 5 \end{gathered}$	$\begin{gathered} \text { 51.54;(51. } \\ 24) \end{gathered}$	$\begin{aligned} & \text { 3.88;(4.0 } \\ & 2) \end{aligned}$	8.89;(8.79)
2a	$\begin{aligned} & \mathrm{H}_{2} \text { sal- } \\ & \text { NAH; } \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \end{aligned}$	$\begin{gathered} \text { Yello } \\ \text { w } \\ \hline \end{gathered}$	241	85	$\begin{gathered} 16 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { 64.73;(65. } \\ 83) \\ \hline \end{gathered}$	$\begin{gathered} 4.56 ;(4.3 \\ 2) \end{gathered}$	$\begin{gathered} \text { 17.42;(17. } \\ 46) \end{gathered}$
2b	$\begin{aligned} & \mathrm{MoO}_{2}(\text { sal- } \\ & \text { NAH); } \mathrm{MoC}_{15} \mathrm{H}_{15} \\ & \mathrm{~N}_{3} \mathrm{O}_{5} \end{aligned}$	Green	$\begin{gathered} 412.9 \\ 4 \end{gathered}$	84	$\begin{gathered} 21 \\ 0 \end{gathered}$	$\begin{gathered} \text { 43.58;(43. } \\ 97) \end{gathered}$	$\begin{gathered} 3.63 ;(3.6 \\ 5) \end{gathered}$	$\begin{gathered} 10.17 ;(10 . \\ 2) \end{gathered}$
3a	$\mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH}$; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	Crea m	316	$\begin{gathered} 82.8 \\ 7 \end{gathered}$	$\begin{gathered} 22 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 75.94(75.7 \\ & 6) \\ & \hline \end{aligned}$	$\begin{gathered} 5.97(5.6 \\ 6) \\ \hline \end{gathered}$	$\begin{gathered} 10.44(9.47 \\) \end{gathered}$
3b	$\begin{aligned} & \mathrm{MoO}(\mathrm{hbp}- \\ & \mathrm{BAH}) ; \mathrm{MoC}_{22} \mathrm{H}_{20} \\ & \mathrm{~N}_{2} \mathrm{O}_{5} \end{aligned}$	Green	$\begin{gathered} 487.9 \\ 4 \end{gathered}$	86	$\begin{gathered} 25 \\ 5 \end{gathered}$	$\begin{aligned} & \text { 45.08(45.8 } \\ & 2) \end{aligned}$	$4.09(4.1$ 2)	5.73(5.8)
4a	$\begin{aligned} & \mathrm{H}_{2} \mathrm{sal}- \\ & \mathrm{BAH} ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \\ & \hline \end{aligned}$	Crea m	240	$\begin{gathered} \hline 82.4 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 4 \end{gathered}$	$\left.\begin{array}{c} 70.0(69.82 \\ 1 \end{array}\right)$	$\begin{gathered} \text { 5.00(4.7 } \\ \text { 8) } \end{gathered}$	$\begin{gathered} 11.66(10.7 \\ 9) \end{gathered}$
4b	$\begin{aligned} & \hline \mathrm{MoO}_{2}(\text { sal- } \\ & \mathrm{BAH}) ; \mathrm{MoC}_{16} \mathrm{H}_{16} \\ & \mathrm{~N}_{2} \mathrm{O}_{5} \\ & \hline \end{aligned}$	Green	$\begin{gathered} 411.9 \\ 4 \end{gathered}$	89	$\begin{gathered} 28 \\ 9 \end{gathered}$	$\begin{aligned} & \text { 46.60(46.1 } \\ & \text { 2) } \end{aligned}$	$\begin{gathered} 3.88(3.8 \\ 7) \end{gathered}$	6.79(6.95)
5a	$\mathrm{H}_{2} \mathrm{hbp}-$ $\mathrm{SAH} ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	Crea m	332	$\begin{gathered} 83.1 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} 71.28(71.6 \\ 6) \\ \hline \end{gathered}$	$\begin{gathered} \text { 4.81(4.4 } \\ 4) \\ \hline \end{gathered}$	8.43(8.55)
5b	$\begin{array}{\|l} \hline \mathrm{MoO}_{2} \text { (hbp- } \\ \mathrm{SAH}) ; \mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N} \\ { }_{2} \mathrm{O}_{6} \\ \hline \end{array}$	Green	$\begin{gathered} 475.9 \\ 4 \end{gathered}$	86	$\begin{gathered} 30 \\ 0 \end{gathered}$	$50.42(50.3$ 5)	$3.36(3.5$ 1)	5.88(5.98)
6a	$\begin{aligned} & \mathrm{H}_{2} \text { sal- } \\ & \mathrm{SAH} ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \text { Yello } \\ \text { w } \end{gathered}$	256	89	$\begin{gathered} 18 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 65.6(65.83 \\) \end{gathered}$	$\begin{gathered} 4.68(4.3 \\ 2) \\ \hline \end{gathered}$	5.46(5.11)
6b	$\begin{aligned} & \mathrm{MoO}_{2}(\text { sal-SAH }) ; \\ & \mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Oran } \\ \text { ge } \\ \hline \end{gathered}$	$\begin{gathered} 399.9 \\ 4 \\ \hline \end{gathered}$	86	$\begin{gathered} 25 \\ 4 \end{gathered}$	$\begin{gathered} 42.00(41.9 \\ 0) \\ \hline \end{gathered}$	$\begin{gathered} 3.00(2.6 \\ 5) \\ \hline \end{gathered}$	7.00(6.95)

Table 2: IR Spectral Data of Ligands (1a-6a) and Complexes (1b-6b)

Sr.No.	Ligands/ Complexes	Infrared Data (cm ${ }^{-1}$)					
		$\mathrm{v}(\mathrm{OH})$	v (NH)	$v(\mathbf{C}=\mathrm{N})$	$\nu(\mathbf{C}=\mathbf{O})$	$v(\mathbf{C - O})$	$v(\mathbf{M o}=\mathbf{O})$
1a	$\begin{gathered} \mathrm{H}_{2} \mathrm{hbp-} \\ \mathrm{NAH} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \\ \hline \end{gathered}$	3322	3021	1660	1672	------	------
1b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \text { NAH); } \mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \\ \hline \end{gathered}$	3211	--	1625;1594	-------	1156	948;904
2a	$\mathrm{H}_{2} \mathrm{sal}-\mathrm{NAH} ; \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	3250	3100	1580	1608	------	------
2b	$\begin{gathered} \mathrm{MoO}_{2}\left(\mathrm{sal}^{-}\right. \\ \mathrm{NAH}) ; \mathrm{MoC}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \end{gathered}$	3315	-------	1560;1535	-------	1151	920;913
3a	$\mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH}$; $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	3540	3063	1608	1652	-----	-------
3b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{BAH}) ; \mathrm{MoC}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \end{gathered}$	3066	-------	1595;1553	--------	1177	923;899
4a	$\mathrm{H}_{2} \mathrm{sal}-\mathrm{BAH} ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	3631	3260	1622	1672	----	-------
4b	MoO_{2} (sal-BAH) ; $\mathrm{MoC}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	3200	--------	1612;1556	--------	1153	914;895
5a	$\begin{aligned} & \mathrm{H}_{2} \mathrm{hbp}-\mathrm{SAH} \\ & ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \end{aligned}$	3343;3320	3060	1600	1648	-----	------
5b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{SAH}) ; \mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \\ \hline \end{gathered}$	3343;1624	-----	1595.01;1604.45	-----	1248	943;893
6a	H_{2} sal-SAH; $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$	3290;3200	3050	1618	1655	-----	-----
6b	MoO_{2} (sal-SAH) ; $\mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$	3290;1624	--	1601;1552	--	1246	891;910

Table 3 : Electronic Spectral Data of Ligands (1a-6a) and their Dioxomolybdenum Complexes (1b-6b)

Sr. No	Ligands/ Complexes	$\begin{gathered} \text { UV-Vis } \\ \boldsymbol{\lambda} \operatorname{nm}\left(\in \mathbf{M}^{-}\right. \\ \left.{ }^{1} \mathbf{c m}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{S r} \\ \dot{\mathbf{N}} \\ \mathbf{0} \\ \hline \end{gathered}$	Ligands/ Complexes	$\begin{gathered} \text { UV-Vis } \\ \boldsymbol{\lambda} \\ \mathbf{n m}(\in \mathbf{M} \\ \left.-1 \mathbf{c m}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathbf{S r} \\ \dot{N} \\ \mathbf{o} \end{gathered}$	Ligands/ Complexes	$\begin{gathered} \text { UV-Vis } \\ \mathbf{\lambda ~ \mathbf { n m } (\in \mathbf { M } ^ { - }} \\ \left.{ }^{1} \mathbf{c m}^{-1}\right) \end{gathered}$
1a	$\begin{gathered} \mathrm{H}_{2} \mathrm{hbp}-\mathrm{NAH} \\ \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \end{gathered}$	$\begin{gathered} 295 \\ \left(1.7 \times 10^{4}\right) \\ 330 \\ \left(1.7 \times 10^{4}\right) \end{gathered}$	3a	H_{2} hbp-BAH $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{gathered} 300 \\ (1.9 \times 10 \\ 4) \\ 350 \\ (1.9 \times 10 \\ 4) \end{gathered}$	5a	H_{2} hbp-SAH $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	$\begin{gathered} 300 \\ \left(1.0 \times 10^{4}\right) \\ 360 \\ \left(1.0 \times 10^{4}\right) \end{gathered}$
1b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{NAH}) \\ \mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \\ \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 405 \\ \left(7.5 \times 10^{3}\right) \end{gathered}$	3b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{BAH}) \\ \mathrm{MoC}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \\ \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 405 \\ (1.9 \times 10 \\ 4) \end{gathered}$	5b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{SAH}) \\ \mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \\ \mathrm{O}_{6} \\ \hline \end{gathered}$	$\begin{gathered} \text { 405(1.0x1 } \\ \left.0^{4}\right) \end{gathered}$
2a	$\begin{aligned} & \mathrm{H}_{2} \text { sal-NAH } \\ & \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \end{aligned}$	295 $\left(2.1 \times 10^{4}\right)$ 330 $\left(2.0 \times 10^{4}\right)$	4a	$\begin{aligned} & \mathrm{H}_{2} \text { sal-BAH } \\ & \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{gathered} \hline 280 \\ (1.6 \times 10 \\ 4) \\ 330 \\ (2.9 \times 10 \\ 4) \end{gathered}$	6 a	$\begin{aligned} & \mathrm{H}_{2} \text { sal-SAH } \\ & \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \hline 297 \\ \left(1.7 \times 10^{4}\right) \\ 335 \\ \left(2.2 \times 10^{4}\right) \end{gathered}$
2b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{NAH}) \\ \mathrm{MoC}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \\ \mathrm{O}_{5} \end{gathered}$	$\begin{gathered} 410(0.3 \times 1 \\ \left.0^{4}\right) \end{gathered}$	4b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \text { BAH) } \\ \\ \mathrm{MoC}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \\ \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{gathered} 410 \\ (0.3 \times 10 \\ 4) \end{gathered}$	6b	$\begin{gathered} \mathrm{MoO}_{2} \text { (sal- } \\ \mathrm{SAH}) \\ \mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \\ \mathrm{O}_{6} \end{gathered}$	$\begin{gathered} 410 \\ \left(1.95 \times 10^{4}\right) \end{gathered}$

Table 4: ${ }^{1} H$ NMR Spectral Data of Ligands (1a-6a) and Complexes (1b-6b)

Sr.No.	Ligands/ Complexes	8, ppm
1a	$\begin{gathered} \mathrm{H}_{2} \mathrm{hbp}- \\ \mathrm{NAH} ; \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \end{gathered}$	11.70(s,OH,1H); 12.09(s, NH,1H); 6.97-8.02m, ArH, 13H).
1b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{NAH}) ; \mathrm{MoC}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{aligned} & 11.70(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 1.28-1.42\left(\mathrm{q},-\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 2.12- \\ & \left.2.19\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) ; 6.97-8.02 \mathrm{~m}, \mathrm{ArH}, 13 \mathrm{H}\right) . \end{aligned}$
2a	$\begin{gathered} \mathrm{H}_{2} \mathrm{sal} \\ \mathrm{NAH} ; \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \\ \hline \end{gathered}$	$11.43(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 12.20(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 8.3(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 6.87-$ 8.75(m,ArH,8H).
2b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{sal}- \\ \text { NAH); } \mathrm{MoC}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5} \\ \hline \end{gathered}$	$\begin{aligned} & 12.91(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 8.34(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) 1.06-1.17\left(\mathrm{q},-\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; \\ & 3.16-3.31\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) ; 6.87-8.75(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H}) . \end{aligned}$
3a	$\begin{aligned} & \mathrm{H}_{2} \mathrm{hbp}-\mathrm{BAH} \\ & ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	10.92(s,OH,1H);13.1(s,NH,1H);7.08-8.03(m,ArH, 14H).
3b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{BAH}) ; \mathrm{MoC}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \end{gathered}$	$\begin{aligned} & \text { 11.1(s,OH,1H); 1.21-1.29(q,-CH }, 3 \mathrm{H}) ; 2.56-2.57(\mathrm{t},- \\ & \left.\mathrm{CH}_{2}, 3 \mathrm{H}\right) ; 7.01-8.05(\mathrm{~m}, \mathrm{ArH}, 14 \mathrm{H}) . \end{aligned}$
4a	$\begin{gathered} \mathrm{H}_{2} \mathrm{sal} \\ \mathrm{BAH} ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \end{gathered}$	$\begin{aligned} & 11.58(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 11.82(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 8.53(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 6.86- \\ & 8.5(\mathrm{~m}, \mathrm{ArH}, 9 \mathrm{H}) . \end{aligned}$
4b	MoO_{2} (sal-BAH) ; $\mathrm{MoC}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$	$\begin{aligned} & 11.58(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 8.53(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 1.37-1.41(\mathrm{q},- \\ & \left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 3.38-3.44\left(\mathrm{t},-\mathrm{CH}_{2}, 3 \mathrm{H}\right) ; 6.94-8.12(\mathrm{~m}, \mathrm{ArH}, 9 \mathrm{H}) . \end{aligned}$
5a	$\begin{gathered} \mathrm{H}_{2} \mathrm{hbp}- \\ \mathrm{SAH} ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \end{gathered}$	$11.52(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H}) ; 10.4(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 7.54-8.28$ (m, $\mathrm{ArH}, 13 \mathrm{H})$.
5b	$\begin{gathered} \mathrm{MoO}_{2}(\mathrm{hbp}- \\ \mathrm{SAH}) ; \mathrm{MoC}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \end{gathered}$	11.5(s,OH,1H); 1.4-1.64(q, $\left.\mathrm{CH}_{3}, 3 \mathrm{H}\right) ; 2,81-2.98\left(\mathrm{t}, \mathrm{CH}_{2}, 2 \mathrm{H}\right) ;$ $7.4-7.81(\mathrm{~m}, \mathrm{ArH}, 13 \mathrm{H})$.
6a	$\begin{gathered} \mathrm{H}_{2} \text { sal- } \\ \mathrm{SAH} ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \\ \hline \end{gathered}$	$\begin{aligned} & 11.97(\mathrm{~s}, \mathrm{OH}, 2 \mathrm{H}) ; \quad 11.40(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H}) ; 8.6(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) \\ & 6.8-7.93(\mathrm{~m}, \mathrm{ArH}, 8 \mathrm{H}) \end{aligned}$
6b	$\begin{aligned} & \hline \mathrm{MoO}_{2}(\text { sal-SAH }) \\ & \mathrm{MoC}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6} \\ & \hline \end{aligned}$	$11.31(\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}) ; 8.68(\mathrm{~s}, \mathrm{CH}, 1 \mathrm{H}) ; 6.90-8.68$ (m,ArH, 8H)

Table 5: Thermal Decomposition Data of complexes ($1 \mathrm{~b}-6 \mathrm{~b}$)

$\begin{gathered} \mathbf{S r} \\ \dot{\mathbf{n}} \\ \mathbf{o} . \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathrm{d}} \\ \left({ }^{\circ} \mathbf{C}\right) \end{gathered}$	\% Weight Loss											
		1b $\mathrm{MoO}_{2}(\mathrm{hbp}-$ NAH) $\mathrm{MoC}_{21} \mathbf{H}_{19} \mathrm{~N}$ $\mathbf{3 O}_{5}$		2b$\mathrm{MoO}_{2}($ Sal$\left.\mathrm{NAH}^{2}\right)$$\mathrm{MoC}_{15} \mathrm{H}_{15}$$\mathrm{~N}_{3} \mathrm{O}_{5}$		3b $\mathbf{M o O}_{2}(\mathrm{hbp}-$ $\left.\mathbf{B A H}^{2}\right)$ $\mathrm{MoC}_{22} \mathbf{H}_{20}$ $\mathrm{~N}_{2} \mathrm{O}_{5}$		4bMoO_{2} (sal-BAH^{2})$\mathrm{MoC}_{16} \mathrm{H}_{16}$$\mathrm{~N}_{2} \mathrm{O}_{5}$		5b$\mathrm{MoO}_{2}(\mathrm{hbp}-$$\left.\mathrm{SAH}^{2}\right)$$\mathrm{MoC}_{20} \mathrm{H}_{16}$$\mathrm{~N}_{2} \mathrm{O}_{6}$		6bMoO_{2} (sal-SAH^{2})$\mathrm{MoC}_{14} \mathrm{H}_{12}$$\mathrm{~N}_{2} \mathrm{O}_{6}$	
		Cal c.	Obs	Cal c.	Obs	Cal c.	Obs	$\begin{aligned} & \text { Cal } \\ & \text { c. } \end{aligned}$	Obs	$\begin{aligned} & \text { Cal } \\ & \text { c. } \end{aligned}$	Obs	Cal c.	Obs
1	$\begin{gathered} \hline 80- \\ 102 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 9.4 \\ 0 \end{gathered}$	$\begin{gathered} 9.2 \\ 5 \end{gathered}$	9.40	9.25	9.42	8.73	$\begin{gathered} 11.1 \\ 6 \end{gathered}$	$\begin{gathered} 10.8 \\ 8 \end{gathered}$	3.70	3.52	4.50	4.20
2	$\begin{gathered} 296 \\ - \\ 420 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 44 . \\ 02 \end{gathered}$	$\begin{aligned} & 43 . \\ & 82 \end{aligned}$	$\begin{gathered} 44.0 \\ 2 \end{gathered}$	$\begin{gathered} 43.8 \\ 2 \end{gathered}$	$\begin{gathered} 44.1 \\ 2 \end{gathered}$	$\begin{gathered} 44.4 \\ 5 \end{gathered}$	$\begin{gathered} 32.5 \\ 0 \end{gathered}$	$\begin{gathered} 33.2 \\ 1 \end{gathered}$	$\begin{gathered} 42.5 \\ 8 \end{gathered}$	42	$\begin{gathered} 31.1 \\ 5 \end{gathered}$	$\begin{gathered} 32.1 \\ 5 \end{gathered}$
3	$\begin{gathered} 420 \\ - \\ 770 \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & 48 . \\ & 39 \end{aligned}$	$\begin{aligned} & 47 . \\ & 71 \end{aligned}$	$\begin{gathered} 48.3 \\ 9 \end{gathered}$	$\begin{gathered} 47.6 \\ 2 \end{gathered}$	$\begin{gathered} 48.1 \\ 8 \end{gathered}$	$\begin{gathered} 48.7 \\ 2 \end{gathered}$	$\begin{gathered} 48.1 \\ 8 \end{gathered}$	$\begin{gathered} 47.4 \\ 7 \end{gathered}$	$\begin{gathered} 51.3 \\ 4 \end{gathered}$	$\begin{gathered} 50.5 \\ 0 \end{gathered}$	$\begin{gathered} 51.3 \\ 4 \end{gathered}$	$\begin{gathered} 52.1 \\ 0 \end{gathered}$

T_{d} - Decomposition temperature

Table 6: X-ray Diffraction Data of representive Complex $\mathbf{M o O}_{2}(\mathrm{hbp}-\mathrm{NAH})$ ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) (1b)

h	k	1	2θ	2θ	2θ	d	d	Intensity
		(Exp.)	(Calc.)	(Diff.)	(Exp.)	(Calc.)	(Exp.)	
-1	0	0	11.357	11.678	-0.321	7.78530	7.57183	101.42
0	1	1	11.796	11.774	0.022	7.49612	7.51027	99.76
0	-1	1	13.426	13.477	-0.051	6.58947	6.56468	327.81
1	1	1	13.835	14.051	-0.216	6.39554	6.29791	161.00
1	1	1	14.456	14.051	0.405	6.12245	6.29791	87.27
-1	0	1	15.520	15.688	-0.168	5.70475	5.64406	115.84
-1	0	1	15.930	15.688	0.242	5.55902	5.64406	121.18
0	0	2	17.767	17.603	0.164	4.98823	5.03421	163.40
0	2	0	18.087	18.255	-0.168	4.90053	4.85590	176.50
0	1	2	18.629	18.722	-0.093	4.75936	4.73593	113.65
1	0	2	19.548	19.581	-0.033	4.53756	4.53004	185.45
1	0	2	19.936	19.581	0.356	4.45005	4.53004	170.05
0	-1	2	20.763	20.918	-0.154	4.27456	4.24339	286.22
0	-2	1	21.225	21.335	-0.110	4.18263	4.16128	238.64
-1	0	2	22.251	22.664	-0.413	3.99196	3.92019	189.83
1	2	2	23.235	23.252	-0.016	3.82513	3.82247	110.25
-1	-1	2	24.305	24.402	-0.097	3.65917	3.64482	115.68
-1	2	1	25.013	25.180	-0.167	3.55713	3.53390	196.93
2	2	1	25.844	25.941	-0.097	3.44459	3.43199	134.99
2	2	0	26.482	26.522	-0.041	3.36307	3.35802	111.12
0	3	0	27.520	27.531	-0.010	3.23847	3.23727	140.91
2	2	2	28.120	28.319	-0.199	3.17075	3.14895	113.76
2	2	2	28.492	28.319	0.173	3.13019	3.14895	122.16
-1	-2	2	28.818	29.144	-0.326	3.09553	3.06163	107.83
1	3	2	29.557	29.618	-0.061	3.01976	3.01371	135.30
-2	-2	1	29.856	29.904	-0.048	2.99025	2.98552	123.59
-1	-3	1	30.641	30.608	0.033	2.91543	2.91850	91.81
2	1	3	31.575	31.566	0.009	2.83124	2.83206	105.09
-2	-1	2	32.229	32.237	-0.008	2.77523	2.77460	81.91
2	0	3	32.800	32.761	0.039	2.72823	2.73140	95.55
2	3	2	33.403	33.086	0.317	2.68036	2.70531	95.70
3	1	1	34.118	34.093	0.025	2.62582	2.62767	94.95
3	1	0	34.764	34.710	0.054	2.57849	2.58234	108.33
3	2	1	35.496	35.458	0.038	2.52698	2.52960	80.00
-3	-1	1	37.714	37.576	0.138	2.38328	2.39171	101.91
2	1	4	38.380	38.460	-0.080	2.34346	2.33875	90.36
-1	1	4	40.296	40.000	0.297	2.23632	2.25222	79.43

Table7: X-ray Diffraction Data of representative Complex MoO_{2} (sal$\mathbf{N A H})\left(\mathbf{C}_{2} \mathbf{H}_{5} \mathrm{OH}\right)(2 b)$

\mathbf{H}	\mathbf{k}	$\mathbf{1}$	$\mathbf{2} \theta$	$\mathbf{2} \theta$	$\mathbf{2} \theta$	\mathbf{d}	\mathbf{d}	Intensity
			(Exp.)	(Calc.)	(Diff.)	(Exp.)	(Calc.)	(Exp.)
0	1	1	11.522	11.679	-0.157	7.67403	7.57091	61.00
0	-1	1	12.799	13.283	-0.484	6.91080	6.66017	259.21
1	0	1	13.762	13.741	0.021	6.42940	6.43920	126.15
1	1	1	14.893	14.615	0.278	5.94369	6.05599	78.91
1	1	1	15.105	14.615	0.490	5.86055	6.05599	61.47
-1	1	0	16.280	16.187	0.093	5.44021	5.47132	154.08
0	2	0	17.972	18.027	-0.055	4.93158	4.91673	72.10
0	2	1	19.017	19.003	0.014	4.66307	4.66647	177.85
-1	-2	0	19.877	19.936	-0.059	4.46306	4.45003	128.66
-1	0	2	22.251	22.642	-0.391	3.99201	3.92399	89.54
-1	2	0	23.218	23.361	-0.142	3.82786	3.80489	28.93
-1	-1	2	24.498	24.478	0.020	3.63072	3.63360	53.75
1	-2	1	25.012	25.147	-0.135	3.55724	3.53841	71.07
1	-2	1	25.617	25.147	0.470	3.47455	3.53841	116.41
0	0	3	26.039	26.247	-0.208	3.41923	3.39263	24.37
2	0	2	27.728	27.685	0.043	3.21468	3.21960	45.38
2	-1	1	28.319	27.850	0.469	3.14895	3.20092	34.50
1	-1	3	30.284	30.429	-0.145	2.94897	2.93526	29.45
2	-1	2	31.196	31.111	0.085	2.86481	2.87245	23.25
-1	3	1	32.471	32.427	0.044	2.75518	2.75880	23.01
-2	-1	2	32.896	32.790	0.106	2.72051	2.72908	45.17
1	-3	1	33.271	33.351	-0.080	2.69068	2.68443	56.75
-1	2	3	34.900	35.016	-0.116	2.56872	2.56049	20.86
-2	0	3	38.630	38.621	0.010	2.32884	2.32940	24.00
2	2	4	40.290	40.184	0.105	2.23667	2.24229	24.32
0	-3	3	40.585	40.605	-0.019	2.22107	2.22006	22.07
-1	2	4	42.259	42.256	0.004	2.13688	2.13705	24.72
0	-4	2	42.765	42.810	-0.045	2.11279	2.11067	25.66
-1	4	2	43.210	43.221	-0.011	2.09205	2.09154	20.23
1	5	1	45.461	44.989	0.472	1.99355	2.01336	22.04

Fig1: A- Proposed structure for 1a and 2a 1b and 2b

B- Proposed structure for 3a and 4a

structure for $\mathbf{3 b}$ and 4b

C- Proposed structure for 5 a and 6a

5b and 6b

Fig 2: E-Proposed structure for

F- Proposed

G- Proposed structure for

