

Synthesis of Novel Spiro Barbiturates and Their Glycosides

P. Gaidhane¹, M. Gaidhane² and V. Ingle³

¹Govindrao Wajnjari College of Engineering and Technology, Nahpur-India ²Shri Lomdeopatil Mahavidhyalaya, Mandal, Nagpur-India ³Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur- India. pravin.kg@rediffmail.com

Abstract:

Malonic acid undergoes condensation readily with ureas1 to yield barbituric acids 2 which on bromination give5,5-dibromobarbituric acids 3. Reaction of Pyrogallol with these 5,5dibromo barbituric acids afforded 2, 3-(4/- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza [4, 5] deca-6, 8, 10-triones. 4. The compound 4 were glucosylated using acetobromoglucose (ACBG) as a glucosylating agent. to get 2, $3-(3/-O-\beta-D-Glucopyranosyloxybenz)-1,4$ -dioxo-7,9-diaza-spiro[4,5] deca-6, 8, 10-triones 6. The structures of the products have been assigned on the basis of ¹H NMR, ¹³C NMR, FAB-MS, optical activity and elemental analysis. The title compounds are found to have antibacterial and antifungal activities.

Keywords: Barbituric acid, 5, 5-dibromo barbituric acid, pyrogallol, 1,3, benzodioxole, glucopyranosyl, triones.

Introduction:

SPIRO systems have been the subject of considerable interest in chemistry because of their unique structural and reactivity pattern. Many spiro compounds possess antiparasitic and analgesic activities.^[1] The literature reports revealed the synthesis of spiroheterocycles which were used as intermediates for aldose reductase inhibitors, and some new spiroheterocycles are also found to have activity as herbicides and pesticides.^[2]Spirocarbocyclic systems also enhance the biological potency of certain compounds.^[3]Barbituric acids have been reported to possess a wide spectrum of biological activities as sedatives and hypnotics, antitumor, antiviral, anti-inflammatory, antisclerotics, and bacteriostatics.^[4-6] 1,3, benzodioxole have been used as antispasmodics, sedatives, analgesic, tranquilizer and anesthesia.^[7,8] Drugs modified with carbohydrates exhibit a variety of biological and therapeutic properties. Certain glycoconjugates are more readily excretable and resistant to significant metabolic transformation.^[9-12]

In continuation of our work on the synthesis of 2, 3- (4/- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza [4, 5] deca-6, 8, 10-triones **4** based on the interaction of Pyrogallol and 5,5-dibromo barbituric acid,^[13]. The interaction of potassium salt of **4 a** and acetobromoglucose (ACBG) afforded 2, 3-(3/-(2, 3, 4, 6-Tetra-*O*-acetyl-*O*- β -D-glucopyranosyloxybenz))-1, 4-dioxo-7, 9-diaza-spiro[4,5] deca-6, 8, 10-triones **5** which was finally deacetylated using sodium methoxide in methanol to gives 2, 3-(3/-*O*- β -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10triones **6.** and herein we report the synthesis screening results of 2, 3-(3/-*O*- β -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10triones **6.** and herein we report the synthesis screening results of 2, 3-(3/-*O*- β -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10triones **6.** and herein we report the synthesis screening results of 2, 3-(3/-*O*- β -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10triones **6.** and herein we report the synthesis screening results of 2, 3-(3/-*O*- β -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10-triones **6** inantibacterial and antifungal assays.

Results and Discussion:

In Biltz and Wittekmethod^[14], ureas**1** are condensed with malonic acid in acetic acid-acetic anhydride.to get barbituric acids 2. The 5,5-Dibromo barbituric acids **3** were prepared by adding bromine to barbituric acids in suitable solvents.^[15,16] Glacial acetic acid was found to be the most convenient solvent for bromition of N-substituted barbituric acids. These acids gave a positive test for bromine. The rate of dioxolane formation-etherification-depends on the presence of substituents attached to nitrogen atoms in barbituric acids. It is fast in the case of 1-aryl and 1,3-diaryl barbituric acids. The replacement of N-hydrogen by aryl groups increases the solubility of barbituric acids in organic solvents. In the ¹H NMR spectrum, **3a** exhibited a singlet for NH at δ 11.68 ppm, while the ¹³C NMR spectrum showed peaks at 163 (C-6, C-4,), 148 (C-2), and 46 ppm (C-5, C-Br). The IR spectrum showed absorption bands at 3203 (NH), 1714 (C=O), 1183 (C-N-C) and 587 cm⁻¹ (C-Br). The reaction of 5,5-dibromo barbituric acid **3a** with pyragallol afforded **4a**. The negative test for bromine, the absence of C-Br absorption band in the spectrum and the presence of strong band at 1263 cm⁻¹ for C-O-C is fully consistent with structure 4a. The infrared spectrum of 4a exhibited characteristic bands at 3414 (OH), 3128 (NH), 2931 (Ar-CH), 1645 (C=O), 1218 (C-O-C), 1169 cm⁻ ¹ (C-N-C) groups ¹H NMR¹⁵⁶⁻¹⁶¹: ¹H NMR spectrum of **4a** showed signals at δ 10 (H, (H, Ar-H) and 5.0 (H, OH) groups. The IR of **6a** exhibited NH), 6.18-6.22 characteristics bands at 3549 (glucosidic OH), 3297 (NH), 2913 (Ar-CH), 1706 (C=O), 1282 (C-O-C), 1193 cm⁻¹(C-N-C) ¹H NMR: ¹H NMR spectrum of **6a** showed signals at δ 10 (H, NH), 6.2-6.66 (H, Ar-H) 3.7 (H, CH₂), 3.4-5.8 (H, glucosidic CH)and 2 ppm (H, glucosidic CH). EI-Mass spectrum showed a molecular ion peak at 412 (M⁺) and was dominated by m/z 250 (C₁₃O₁₁N₂H₁₈) with the loss of C₆H₁₀O₆. (fig 1.22). It showed molecular ion peaks at m/z 233, 120, 108, 92 and 78. In view of above the facts, the compound **6a** was assigned the structure $2,3-(3/-O-\beta-D-$ Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-triones. All the compounds gave satisfactory C, H, and N elemental analysis (Table V).

2.1.1. Antimicrobial activity

The synthesized compounds were screened for their antibacterial activities by the using the cup-plate method against B. *subtilis* (gram-positive) and E. *coli* (gram-negative) at concentrations of 100 μ g/mL in DMF. Pure Norfloxacine was taken as standard antibiotic for the comparison of the results. The sterilized nutrient agar media (30 mL) was inoculated with the test organism and poured optically in to the Petridishes. Then four holes of 6 mm diameter were punched carefully by the using sterile cork-border and these were completely filled with different test solution. The plates were then incubated for 24 h at 37°C and zones of inhibitions were measured. Similar procedure was adopted for pure Norfloxacine and the corresponding zone diameters were compared. The screening results indicate that compounds **6a-k** showed moderate to excellent bactericidal activities against both organisms (Table VI).

International Journal of Researches In Biosciences, Agriculture & Technology

Antifungal activity

The antifungal activity of synthesized compounds was evaluated by the using above same method (cup-plate technique) against A. *niger* and C. *albicans* at concentration 100 μ g/mL in DMF. The plates were incubated for 8 days at 37°C. The zones of inhibitions were measured. Similarly a commercial fungicide Griseofulvin was also tested under similar condition with a view of comparing the results. The compounds showed significant fungitoxicity against both the test fungi(Table VI).

Experimental

General methods

Substituted ureas **1** were prepared as described in the literature.^[17] Melting points were determined in open glass capillaries and are uncorrected. Optical rotations were measured at 29°C. Elemental analysis ware determined using the Perkin Elmer 2400 CHN analyzer. FT-IR spectra were recorded using (KBr) disc on Perkin-Elmer spectrum Rx-I spectrometer. ¹H NMR and ¹³C NMR on Brucker AC-300 F (300 MHz) NMR spectrometer by using DMSO and CDCl₃ as solvent and tetramethylsilane as an internal standard. Mass spectra were recorded on 70-S Mass spectrometer using *m*-nitro benzyl alcohol (NBA) matrix.

Barbituric acid 2a.Urea **1a** (0.9 g, 0.015 mol) and malonic acid (2.08 g, 0.02 mol) are dissolved in 5 mL of glacial acetic acid in a flask fitted with dropping funnel, reflux condenser and stirrer. The mixture was heated to 65° C and 4 mL of acetic anhydride was added during 30 min. The reaction mixture was heated with stirring at 90°C for 3 h. The solvent was removed by distillation under vacuum at 60°C and the residue was treated with 0.2 N NaOH. The clear solution was acidified with 0.2 N HCl to obtained barbituric acid **2a**. mp 255°C (water) (Yield 50 %).

Similarly, 1-aryl-and 1,3-diaryl barbituric acids **(2b-k)** were prepared by the reaction of substituted ureas**(1b-k)** with malonic acid. Compounds gave satisfactory C, H and N analysis (Table I).

5,5-Dibromobarbituric acid 3a.Thiswas prepared by adding molecular bromine (2.55 g, 0.016 mol) to barbituric acids **2a** (1.28 g, 0.01mol) in H₂O (60 mL) at 50°C. mp 235°C (aqMeOH) (Yield 70 %); IR (KBr): 3203 (-NH), 1714 (C=O), 1183 (C-N-C), 587 (C-Br); ¹H NMR (300 MHz, CDCl₃+DMSO-d₆): 11.68 (s, N-H); ¹³C NMR (100 MHz, CDCl₃+DMSO-d₆): 163 (C-4, C-6), (s, C=O), 148 (C-2) (s, C=O), 46 (C-5) (C-Br). Anal.Calcd. for C, 16.78; H, 0.69; N, 9.79; Found: C, 16.93; H, 1.03; N, 9.97 %.

Similarly,5,5-dibromo-1-aryl-and 1,3-diaryl barbituric acids **(3b-k)** were prepared by adding bromine to 1-aryl-and 1,3-diaryl barbituric acids **(2b-k)** in suitable solvents. (Table II)

2, 3- (4/- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza [4, 5] deca-6, 8, 10-triones 4a. A mixture of 5,5-dibromo barbituric acid **3a** (2.85 g, 0.01mol), Pyrogallol (0.01mol), pyridine (0.79 g, 0.01 mol) and alcohol (25 mL) was refluxed for 3 h. The excess of solvent was distilled off and the syrup poured on to crushed ice to obtain **4a**.mp>285 °C (AcOH) (Yield 80 %); IR (KBr): FT-IR¹⁵⁶⁻¹⁶¹: The infrared spectrum of **1a** exhibited characteristic bands at 3414 (OH), 3128 (NH), 2931 (Ar-CH), 1645

(C=O), 1218 (C-O-C), 1169 cm⁻¹ (C-N-C) groups H NMR¹⁵⁶⁻¹⁶¹: ¹H NMR spectrum: δ 10 (H, NH), 6.18-6.22 (H, Ar-H) and 5.0 (H, OH) groups

when the reaction of pyrogallol was extended with several other 5,5-dibromo- 1aryl-and 1,3-diaryl barbituric acids **(3b-k)**, thencorresponding 2, 3- (4/- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza [4, 5] deca-6, 8, 10-triones **(4b-k)** have been synthesized. (Table III)

3-(2, 3, 4, 6-Tetra-O-acetyl-O- β -D-glucopyranosyloxybenz)-1, 4-dioxo-7, 9diaza-spiro[4, 5]deca-6, 8, 10-trione 5a: A solution of potassium salt of 3-Hydroxymethyl-1, 4-dioxo-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-triones 4a (1.3 g) in 5% methanolic KOH (10 mL) was added dropwise to a solution of aacetobromoglucose (5 g) in dry acetone (20mL). The resulting mixture was stirred at 0° C for 8 h, and the reaction was allowed to proceed for an additional

24 h at room temperature, and the solvent was removed under reduced pressure. The resulting brown syrup was dissolved in $CH_2OH-CH_2Cl_2$ (8:2) and chromatographed on 60-120 mesh silica gels. The reaction was monitored by TLC (R*f* =0.18). The solvent was evaporated. A brown syrupy 3-(2, 3, 4, 6-tetra-*O*-acetyl-*O*- β -D-glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-triones **5a** was obtained , yield (64%). The compound was found to be optically active and its specific rotation [a]_D²⁹ in methanol was found to be 52.72°.

Likewise, various substituted $3-(2, 3, 4, 6-\text{tetra-O-acetyl-O-}\beta-D-$ glucopyranosyloxybenz)-1, 4-dioxo-7-aryl-7, 9-diaza-/ 7, 9-diazyl-7, 9-diaza-spiro [4, 5] deca-6, 8, 10-triones **5b-k** were prepared (Table-IV).

2, 3-(O-\beta-D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-trione 6a: А mixture of 3-(2,3, 4, 6-tetra-O-acetyl-O-β-Dglucopyranosyloxymethyl)-1, 4-dioxo-7, 9-diaza-spiro[4,5]deca-6, 8, 10-triones 5a (4.2 g), 5% sodium methoxide (20 mL) and methanol (30 mL) was stirred at room temperature for 2 h, and mixture was allowed to stand at room temperature for 24 hours.. After completion of reaction, which was monitored by TLC (Rf = 0.15), it was neutralized with ion-exchange resin (AmberliteIR 120, sd fine, H^+ form). The reaction mixture was filtered and concentrated in vacuo, to afford a viscous, highly hygroscopic brown syrupy **6a** in moderate yield (80%). The compound was found to be optically active and its specific rotation $[\alpha]_D^{29}$ in methanol was found to be 41.33° . FT-IR¹⁵⁶⁻¹⁶¹: The IR exhibited characteristics bands at 3549 (glucosidicOH), 3297 (NH), 2913 (Ar-CH), 1706 (C=O), 1282 (C-O-C), 1193 cm⁻¹(C-N-C). ¹H NMR: ¹H NMR spectrum showed signals at δ 10 (H, NH), 6.2-6.66 (H, Ar-H) 3.7 (H, CH₂), 3.4-5.8 (H, glucosidic CH)and 2 ppm (H, glucosidic CH) EI MS¹⁵⁶⁻¹⁶¹:EI-Mass spectrum showed a molecular ion peak at 412 (M⁺) and was dominated by m/z 250 ($C_{13}O_{11}N_2H_{18}$) with the loss of $C_6H_{10}O_6$. It showed molecular ion peaks at m/z 233, 120, 108, 92 and 78.

In the same manner, various substituted 3-(O- β -D-glucopyranosyloxymethyl)-1, 4dioxo-7-aryl-7, 9-diaza-/ 7, 9-diaryl-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-triones **6b-k** were prepared (Table-V).

O R·NH—C—NH·R ₁							
Product	R		R ₁ Formul	Mol. a	(⁰ C)	M.P.	
1a	Н	I	Н	CH ₄ ON	2	132	
1b	C_{e}	5H5	Н	C7H6ON	2	147 ^a	
1c	C_6	H_5	C ₆ H ₅	C ₁₃ H ₁₀ O	N_2	242 ^b	
1d	0-0	$CH_3-C_6H_4$	Н	C ₈ H ₈ ON	\mathbf{J}_2	198 ^a	
1e	0-0	$CH_3-C_6H_4$	O-CH ₃ -C ₆ H ₄	C ₁₅ H ₁₄ O	N_2	253 ^b	
1f	p-0	$CH_3-C_6H_4$	Н	C ₈ H ₈ ON	2	180 ^a	
1g	p-0	$CH_3-C_6H_4$	$p-CH_3-C_6H_4$	C15H14O	N_2	254 ^b	
1h	Р О-(OCH ₃ -C ₆ H ₄	H	C ₈ H ₈ O ₂	N ₂	168 ª	
1i	0-0	OCH₂-C6H4	0-OCH₂-C6H₄	C15H14O	$_{\rm aN_2}$	184 ^b	
1i	P-(OCH₂-C₄H₄	Н	C.H.O.	N2	168 ^a	
1j 1k	P-(OCH ₂ -C ₆ H ₄	P-OCH ₂ -C ₆ H ₄	C15H14O		234 ^b	
	Tommoundo	mustallized f		0131140	34.12	231	
a = 0	compounds c	rystamzeu I.	ioni water.		1		
b =	Compounds	crystallized	from glacial	acetic acio	1.		
0							
1							
Table	II Characterizati	ion data 5,5-dibr	omobarbituric act	id and 1-aryl-	/ 1,3-diaryl-	5,5-dibromo barbit	turic acids 3a-k
			Ŗ (0			
			N				
			0-				
	N Br						
		R ₁ O					
Product			Ŕ ₁	0			3
	R	Ri	R ₁	M.P.	Yield	% found(Calcd)	
	R	R1 Formula	Mol. (°C)	0 M.P. (%)	Yield C H	<u>% found(Calcd)</u> N	
	R	R₁ Formula	R₁ Mol. (⁰C)	M.P. (%)	Yield C H	<u>% found(Calcd)</u> N	3
	H	R ₁ Formula H	H1 (Mol. (°C) C4H2O3N2Br2	M.P. (%)	Yield C H	<u>% found(Calcd)</u> N 16.91 1.03	9.97
3a	R H	R ₁ Formula H	Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a	Yield C H 70	<u>% found(Calcd)</u> N 16.91 1.03 (16.78) (0.69)	9.97 (9.79)
3a 3b	R H C ₆ H ₅	R ₁ Formula H H	Ŕ ₁ Mol. (^e C) C₄H₂O₃N₂Br₂ C₁0H ₆ O₃N₂Br₂	M.P. (%) 235 ^a 184 ^b	Yield C H 70 68	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (22.14) (5)	9.97 (9.79) 7.93
3a 3b	H C ₆ H ₅	R ₁ Formula H H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b	Yield C H 70 68 71	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59	9.97 (9.79) 7.93 (7.73) 6.74
3a 3b 3c	R H C ₆ H ₅ C ₆ H ₅	R ₁ Formula H H C ₆ H ₅	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₆ H ₁₀ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c	Yiekd C H 70 68 71	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39)
3a 3b 3c 3d	R H C ₆ H ₅ C ₆ H ₅ <i>O</i> -CH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b	с ^{Yield} Н 70 68 71 69	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39
3a 3b 3c 3d	R H C ₆ H ₅ C ₆ H ₅ <i>O</i> -CH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₆ H ₁₀ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b	C ^{Yield} H 70 68 71 69	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04)
3a 3b 3c 3d 3e	R H C ₆ H ₅ C ₆ H ₅ <i>O</i> -CH ₃ -C ₆ H ₄ <i>O</i> -CH ₃ -C ₆ H ₄	R ₁ Formula H G ₆ H ₅ H O-CH ₃ -C ₆ H ₄	R ₁ Mol. (°C) C4H2O3N2Br2 C10H6O3N2Br2 C10H10O3N2Br2 C11H8O3N2Br2 C11H8O3N2Br2 C118H14O3N2Br2	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a	C ^{Yiekd} H 70 68 71 69 71	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34)
3a 3b 3c 3d 3e 3f	R H C_6H_5 C_6H_5 $O-CH_3-C_6H_4$ $O-CH_3-C_6H_4$ $p-CH_3-C_6H_4$	R ₁ Formula H H C ₆ H ₅ H <i>O</i> -CH ₃ -C ₆ H ₄ H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₆ H ₁₀ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₈ H ₁₄ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b	Yield 70 68 71 69 71 69	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42
3a 3b 3c 3d 3e 3f	R H C ₆ H ₅ C ₆ H ₅ <i>O</i> -CH ₃ -C ₆ H ₄ <i>O</i> -CH ₃ -C ₆ H ₄ <i>p</i> -CH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H <i>O</i> -CH ₃ -C ₆ H ₄ H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₀ H ₁₀ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b	C ^{Yield} H 70 68 71 69 71 69	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04)
3a 3b 3c 3d 3e 3f 3g	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄	R_1 Formula H H C_6H_5 H $O-CH_3-C_6H_4$ H $p-CH_3-C_6H_4$	R ₁ Mol. (°C) C4H2O3N2Br2 C10H6O3N2Br2 C16H10O3N2Br2 C11H8O3N2Br2 C11H8O3N2Br2 C11H8O3N2Br2 C11H8O3N2Br2 C11H8O3N2Br2	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b	C ^{Yiekd} H 70 68 71 69 71 69 71 69 75	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (1.24)
3a 3b 3c 3d 3e 3f 3g 3h	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄	R_1 Formula H H C_6H_5 H $O-CH_3-C_6H_4$ H $p-CH_3-C_6H_4$ H	R_{1} $Mol.$ (^{0}C) $C_{4}H_{2}O_{3}N_{2}Br_{2}$ $C_{10}H_{6}O_{3}N_{2}Br_{2}$ $C_{16}H_{10}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{18}H_{14}O_{3}N_{2}Br_{2}$ $C_{18}H_{14}O_{3}N_{2}Br_{2}$ $C_{18}H_{14}O_{3}N_{2}Br_{2}$ $C_{18}H_{14}O_{3}N_{2}Br_{2}$	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c	C ^{Yiekd} H 70 68 71 69 71 69 75 74	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.66 (4.34) 4.98
3a 3b 3c 3d 3e 3f 3g 3h	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H <i>O</i> -CH ₃ -C ₆ H ₄ H <i>p</i> -CH ₃ -C ₆ H ₄ H	R ₁ Mol. (°C) C ₄ H ₂ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₀ H ₆ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂ C ₁₁ H ₈ O ₃ N ₂ Br ₂	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c	C ^{Yield} H 70 68 71 69 71 69 71 69 71	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73 (23.11) (1.40)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.98 (4.90)
3a 3b 3c 3d 3e 3f 3g 3h 3i	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄	R_1 Formula H H C_6H_5 H $O-CH_3-C_6H_4$ H $p-CH_3-C_6H_4$ H $O-OCH_3-C_6H_4$	$\begin{array}{c} & \mathbf{R}_{1} & \mathbf{R}_{1} \\ & \mathbf{Mol.} \\ & (^{0}\mathbf{C}) \\ & \mathbf{C}_{4}\mathbf{H}_{2}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{10}\mathbf{H}_{6}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{16}\mathbf{H}_{10}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{13}\mathbf{H}_{14}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{13}\mathbf{H}_{14}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{13}\mathbf{H}_{14}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ & \mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2} \\ \end{array}$	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c 164 ^b	C ^{Yield} H 70 68 71 69 71 69 71 69 75 74 72	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73 (23.11) (1.40) 31.99 2.37	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.98 (4.90) 4.34
3a 3b 3c 3d 3e 3f 3g 3h 3i	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ P-CH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H <i>O</i> -CH ₃ -C ₆ H ₄ H <i>p</i> -CH ₃ -C ₆ H ₄ H	R_{1} $Mol_{(^{\circ}C)}$ $C_{4}H_{2}O_{3}N_{2}Br_{2}$ $C_{10}H_{6}O_{3}N_{2}Br_{2}$ $C_{16}H_{10}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{3}N_{2}Br_{2}$ $C_{11}H_{8}O_{4}N_{2}Br_{2}$ $C_{11}H_{8}O_{4}N_{2}Br_{2}$ $C_{11}H_{8}O_{4}N_{2}Br_{2}$ $C_{10}H_{14}O_{4}N_{2}Br_{2}$ $C_{10}H_{14}O_{4}N_{2}Br_{2}$	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c 164 ^b	C ^{Yiekd} H 70 68 71 69 71 69 71 69 75 74 72	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73 (23.11) (1.40) 31.99 2.37 (31.95) (2.07)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.98 (4.90) 4.34 (4.14) 4.97
3a 3b 3c 3d 3e 3f 3g 3h 3i 3j	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄ P-OCH ₃ -C ₆ H ₄	R ₁ Formula H H C ₆ H ₅ H <i>O</i> -CH ₃ -C ₆ H ₄ H <i>p</i> -CH ₃ -C ₆ H ₄ H <i>и</i> <i>о</i> -OCH ₃ -C ₆ H ₄	R ₁ Mol. (°C) C4H2O3N2Br2 C10H6O3N2Br2 C10H6O3N2Br2 C16H10O3N2Br2 C11H8O3N2Br2 C18H14O3N2Br2 C18H14O3N2Br2 C18H14O3N2Br2 C11H8O4N2Br2 4 C18H14O4N2Br2 C11H8O4N2Br2	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c 164 ^b 166 ^b	C ^{Yiekd} H 70 68 71 69 71 69 75 74 72 76	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73 (31.1) (1.40) 31.99 2.37 (31.95) (2.07) 23.39 2.79 (23.11) (1.40)	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.98 (4.90) 4.34 (4.14) 4.97 (4.90)
3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k	R H C ₆ H ₅ C ₆ H ₅ O-CH ₃ -C ₆ H ₄ O-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ p-CH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄ O-OCH ₃ -C ₆ H ₄ P-OCH ₃ -C ₆ H ₄ P-OCH ₃ -C ₆ H ₄	R_1 Formula H H C_6H_5 H $O-CH_3-C_6H_4$ H $P-CH_3-C_6H_4$ H $D-OCH_3-C_6H_4$ H	$\begin{array}{c} & \mathbf{R}_{1} \\ & \mathbf{Mol.} \\ & (^{0}\mathbf{C}) \end{array}$ $\mathbf{C}_{4}\mathbf{H}_{2}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{10}\mathbf{H}_{6}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{10}\mathbf{H}_{0}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{13}\mathbf{H}_{14}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{13}\mathbf{H}_{14}\mathbf{O}_{3}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$ $\mathbf{C}_{11}\mathbf{H}_{8}\mathbf{O}_{4}\mathbf{N}_{2}\mathbf{B}\mathbf{r}_{2}$	M.P. (%) 235 ^a 184 ^b 152 ^c 174 ^b 190 ^a 105 ^b 265 ^b 181 ^c 164 ^b 166 ^b 270 ^b	C ^{Yield} H 70 68 71 69 71 69 71 69 75 74 72 76 69	% found(Calcd) N 16.91 1.03 (16.78) (0.69) 33.54 1.89 (33.14) (1.65) 43.97 2.59 (43.83) (2.28) 23.89 1.79 (23.78) (1.44) 33.82 2.41 (32.54) (2.17) 23.87 1.81 (23.78) (1.44) 33.83 2.43 (32.54) (2.17) 23.37 1.73 (23.11) (1.40) 31.99 2.37 (31.95) (2.07) 23.39 2.79 (23.11) (1.40) 31.98 2.93	9.97 (9.79) 7.93 (7.73) 6.74 (6.39) 5.39 (5.04) 4.67 (4.34) 5.42 (5.04) 4.66 (4.34) 4.98 (4.90) 4.34 (4.14) 4.97 (4.90) 4.37

- a = Compounds crystallized from aq methanol.
- b = Compounds crystallized from glacial acetic acid.
- c = Compounds crystallized from benzene.

Table III Characterization data of 2, 3-(3'- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza-/ 7-aryl-7, 9-diaza-/ 7, 9-diaza-/ 7, 9-diaza-spiro [4, 5] deca-6, 8, 10-triones 1a-k

a = Compounds crystallized from glacial acetic acid.

Table IVCharacterisation data of 2, 3-(3'-N- β -D-2, 3, 4, 6-tetra-O-acetyl-glucopyranose)-1, 4-dioxo-7, 9-diaza-spiro[4,
5]deca-6, 8, 10-triones 2a-k

0 R

Table V Characterisation data of 2, 3-(3'-N- β -D-2, 3, 4, 6-tetra-O-acetyl-glucopyranose)-1, 4-dioxo-7, 9-diaza-spiro[4, 5]deca-6, 8, 10-triones 2a-k

Product	R	R_1	Mol.	Yield	[α] ²⁹ _D	<u>% found(Calcd)</u>
			Formula	(%)	(⁰)	C H N
3a	Н	Н	$C_{16}H_{16}O_{11}N_2$	64	41.33	46.53 3.73 6.42
3b	C ₆ H ₅	Н	$C_{22}H_{20}O_{11}N_2$	60	59.37	$\begin{array}{cccc} (46.61) & (3.91) & (6.79) \\ 54.02 & 4.08 & 5.58 \end{array}$
2	C II	C II		(2)	(2.22	(54.10) (4.13) (5.74)
30	C_6H_5	C_6H_5	$C_{28}H_{24}O_{11}N_2$	62	63.32	(59.58) (4.29) (4.96)
3d	O-CH ₃ -C ₆ H ₄	н	$C_{23}H_{22}O_{11}N_2$	58	100.67	54.62 4.28 5.43
3e	O-CH ₃ -C ₆ H ₄	O-CH ₃ -C ₆ H ₄	$C_{30}H_{28}O_{11}N_2$	62	119.38	(54.98) (4.41) $(5.58)60.69$ 4.84 4.53
26	CUL C U		C H O N	(1	05.50	(60.81) (4.76) (4.73)
31	p-CH ₃ -C ₆ H ₄	н	$C_{23}H_{22}O_{11}N_2$	61	-95.72	54.62 4.28 $5.43(54.98)$ (4.41) (5.58)
3g	p-CH ₃ -C ₆ H ₄	p-CH ₃ -C ₆ H ₄	$C_{30}H_{28}O_{11}N_2$	65	72.47	60.69 4.84 4.53
2h		ч	CHON	57	92 21	(60.81) (4.76) $(4.73)53.10 4.16 5.17$
311	0-0CH ₃ -C ₆ H ₄	п	$C_{23}H_{22}O_{12}N_2$	37	03.21	(53.29) (4.28) (5.40)
3i	O-OCH ₃ -C ₆ H ₄	O-OCH ₃ -C ₆ H ₄	$C_{30}H_{28}O_{13}N_2$	64	35.85	57.52 4.03 4.83
3i	P-OCH-CCH	н	CarHarOurNa	63	129.68	(57.69) (4.52) $(4.49)53.10 4.16 5.13$
5)	1 00113-06114		0251122012112	05	127.00	(53.29) (4.28) (5.40)
3k	P-OCH ₃ -C ₆ H ₄	P-OCH ₃ -C ₆ H ₄	$C_{30}H_{28}O_{13}N_2$	59	90.34	57.52 4.03 4.83
						(37.09) (4.32) (4.49)

Table VI. Data for in vitro antibacterial and antifungal activities of compounds 6a-k

Diameter of inhibition zone (in	mm)	against
---------------------------------	-----	---------

	Bacteria	l Strains	Fungal Strains	
products	E.coli	B.subtilis	A. niger	C. albicans
4a	15	17	21	23
4b	14	16	17	15
4c	10	09	11	
4 <i>d</i>	12	10	15	13
4e	16	14	24	28
4 <u>f</u>	13	13	17	
4g	14	16	22	18
4h	11	14	16	16
4 <i>i</i>	15	13	23	21
4j	13	11		17
4k	14	16	22	22

- - = no inhibition of growth.

Diameter of zone of inhibition from 13-16 (in mm) shows excellent activity and that of 9-12 (in mm) exhibits moderate activity for bacterial strains.

Diameter of zone of inhibition from 22-28 (in mm) shows excellent activity, that of 15-21 (in mm) exhibits moderate activity and that of 11-14 (in mm) shows poor activity for Fungal Strains.

Norfloxacine 100 μ g/mL used as standard against E. *coli*, and *B. subtilis*, diameter of zone of inhibition is 20.

Griseofulvin 100 μ g/mL used as standard against A. *niger* and *C. albicans*, diameter of zone of inhibition is 32.

Conclusion:

In continuation of our work the synthesis such spiro system containing all mention moieties in which the synthesis of 2, 3- (4/- Hydroxyl benz)-1, 4-dioxo-7, 9-diaza [4, 5] deca-6, 8, 10-triones **4** based on the interaction of Pyrogallol and 5,5-dibromo barbituric acid,^[13]. The interaction of potassium salt of **4 a** and acetobromoglucose (ACBG) afforded 2, $3-(3/-(2, 3, 4, 6-\text{Tetra-}O-\text{acetyl-}O-\beta-D-\text{glucopyranosyloxybenz}))-1$, 4-dioxo-7, 9-diaza-spiro[4,5] deca-6, 8, 10-triones **5** which was finally deacetylated using sodium methoxide in methanol to gives 2, 3-($3/-O-\beta$ -D-Glucopyranosyloxybenz)-1, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10-triones **6** and herein we report the synthesis screening results of 2, $3-(3/-O-\beta-D-Glucopyranosyloxybenz)-1$, 4-dioxo-7, 9-diaza-spiro[4, 5] deca-6, 8, 10-triones **6** inantibacterial and antifungal assays.

Acknowledgement:

The authors are thankful to Director, SAIF, Chandigarh and CDRI, Lucknow for providing necessary spectral data of the compounds, Head, Department of Pharmaceutical science R.T.M. Nagpur University for screening antimicrobial activity and Head, Department of chemistry, R.T.M. Nagpur University, Nagpur and Principal, GovindraoWanjari College of Engineering and Technology, Nagpur for providing necessary laboratory facilities.

References:

[1] **Chande, M. S.; Ambhaikar, S. B.** 2-Alkyl/arylamino-5-carbethoxythiazolidine-4-one: A new synthons for the synthesis of spiro and fused ring heterocycles. Part I. Indian J. Chem. **1996**, *35B*, 373-376.

[2] Al-Thebeiti, M. S.; El-Zohry, M. F. Synthesis of some new spirothiazolidine and spiroazetidinone derivatives in carporated with quinazoline. Indian J. Chem. 1998, 37B, 804-805.

[3] **Padmavati.V.; Sharmila, K.; Reddy.** Reactivity of 3,5-diaryl-cyclohexanones-Synthesis of spiro-cycloheaxane. Indian J. Chem. **2001**, *40B*, 11-14.

[4] Padmavati, V.; Reddy, B. J. M.; Venketa, D. R. C.; Subbaiah,; Padmaja, A. Michael adducts-Synthons for a new class of 1,4-dispirocyclohexane derivatives. Indian J. Chem. **2006**, *45B*, 808-812.

[5]Levina, R. Ya.; Velichko, F. K. Advance in the chemistry of barbituric acids. Russian Chem. Rev. 1960, 29(8), 437-438.

[6] **Sing, P.; Paul, K.**A simple synthesis of 5-spirobarbituric acids and transformations of spirocyclopropane barbiturates to 5-substitutated barbiturates. Indian J. Chem. **2006**, *45B*, 247-251.

[7] Bianchetti et al., ArzneimittelForsch, 25, 1975, 580.

[8] Merk index, P. N. 816

[9] **Ingle, V. N.; Kharche, S. T.; Upadhyay, U.G.**Glucosylation of 4'-hydroxychalcones using glucosyldoner. Indian J. Chem. **2005**, *44B*, 801-805.

[10] **Wolf, M. E.***Burger's Medicinal and Drug discovery*, 5th Ed.; Vol 1. JOHN WILLY and SONS.Inc: NewYork, 1995; 904-905.

[11] Ingle, V. N.; Kharche, S. T.; Upadhyay, U. G. Synthesis of new 4-O-(β -D-glucopyranosyloxy-6-diaryl-tetrahydropyrimidine-2-thiones and their biological activities. Indian J. Chem. **2004**, 43B, 2027-2031.

[12] Ingle, V. N.; Kharche, S. T.; Upadhyay, U. G. Synthesis of some novel N-(2benzothiazolyl)-1-methyl-1-4-O-(β-D-glucopyranosyloxyphenyl)-azomethine. Indian J. Chem. 2005, 44B, 1859-1862.

[13] Ingle, V. N.; Gaidhane, P. K.; Wanare, R. K.; Umare, V. S.; Taile, V. B. Synthesis of novel 2,3-a-D-galactopyrano-7-phenyl-1,4-dioxo-7,9-diaza-, 7-aryl-7,9-diaza-and 7,9-diaryl-7,9-diaza-spiro[4,5]deca-6,8,10-triones.Acta.Chim.Slov.(In press).

[14] **Cope, C.; Heyl, D.; Eide, C.; Arrova, A.** 1,3-Diamethyl-5-alkyl barbituric acids. J. Amer. Chem. Soc.**1941**, *63*, 356-358.

[15] Bock, W.Barbituric acids. Chem. Abstr. 1923, 17, 982-983.

[16] **Nightingale, D.; Taylor, R. G.** Phenyl alkyl nitrogen substitution and reactivity in barbituric acid series. J. Amer. Chem. Soc. **1939**, *61*, 1015-1017.

[17] Furniss, B. S.; Hannaford, A. N.; Smith, P. G; Tatechell, A. R. Vogel's text book of practical Organic Chemistry, 5th Ed.; EL/BS. London, 1989; 964-965.

A Four Monthly Peer Reviewed Journal VISHWASHANTI MULTIPURPOSE SOCIETY (GLOBAL PEACE MULTIPURPOSE SOCIETY)

An Individual Researcher, Academician, Student or Institution / Industry can apply for Life membership of IJRBAT at following subscription rate

Sr	Type of Membership	Subscription rate
1	Individual life member	5000/-
2	Institutional life membership	10000/-

* Subscription of life member is valid for only Twenty year as per date on Payment Receipt.

* Refer <u>www.vmsindia.org</u> to download membership form

For RTGS/ NEFT/ Western Money Transfer/ Cash Deposit our Bank Details are -

Bank Name	STATE BANK OF INDIA		
Bank Account Name	Vishwashanti Multipurpose Society, Nagpur		
Account No.	33330664869		
Account Type	Current		
IFSC Code	SBIN0016098		
Swift Code	SBININBB239		
Branch Code	16098		
MICR Code	440002054		
Branch Name	Sakkardara, Umrer Road, Dist- Nagpur, Maharashtra 440027.		

