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Abstract 

In the present work we examine the nature of central singularity forming in the higher dimensional 

spherically symmetric collapse of dust cloud and it is shown that this is always a strong naked 

singularity where gravitational tidal forces diverge powerfully. An important consequence is that the 

nature of the naked singularity forming in the dust collapse turns out to be stable against the 

perturbations in dimension of the spacetime. Thus we have shown that the higher dimensional 

gravitational collapse of dust violates the cosmic censorship conjecture.   
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1 Introduction   

 Investigations of exact solutions of the 

Einstein equations have shown that a large 

number of them contain singularities. In 

particular, singularities are present in those 

solutions that constitute reasonable models of 

the final stages of the evolution of stars of 

sufficient matter concentration. Some important 

questions about these singularities are: Can 

these singularities be observed? Whether 

dimensionality plays any fundamental role in 

the formation of naked singularities? Whether 

higher dimensional collapse yields a naked 

singularity? There is a hope, however, that we 

may have some control as to where the 

singularities may appear.  

 The cosmic censorship hypothesis 

(CCH) is an open challenging problem in general 

relativity [1]. It states that under the realistic 

conditions gravitational collapse of spacetime 

does not yields a naked singularity. The 

existence of naked singularities is still difficult 

to understand physically and several 

suggestions have been made to maintain the 

viability of CCH.  

 The principle aim of the present work is 

to show the existence of naked singularities in 

the five dimensional dust collapse. At present 

time, however, CCH is not yet proven, on the 

contrary, many counter examples candidates 

have been found in general relativity. The 

generic occurrence  of naked singularities has 

been shown in the spherical dust collapse 

represented by Tolman-Bondi-Lemaitre  (T-B-L) 

solution [ 2 - 5 ].  

 The T-B-L model of spherical 

inhomogeneous dust is the simplest model that 

allows the formation of both black holes and  

 

 

naked singularities. It is defined by specifying 

two function energy density function 
( )rF

 and 

velocity distribution function
( )rf

, where r  is a 

radial coordinate. The former represents the 

weighted mass contained within the matter shell 

labeled by r  and the latter relates to the 

velocity profile within the collapsing cloud at the 

initial time. 

 In the present work, we would like to 

see the effect of extra dimension on the 

gravitational collapse of T-B-L spacetime. We 

would like to see whether five dimensional 

collapse of dust contradicts CCH or not? We 

also investigate the strength of naked 

singularities arising in this spacetime. 

 The paper is organized as follows: In 

Sec. 2 and  3, we discuss the nature of 

singularities arising in four and five-dimensional 

spacetime. In Sec. 3.1, we analyze the apparent 

horizon formation. In Sec. 3.2 and 3.3, we study 

the visible singularity and strength of naked 

singularity arising in gravitational collapse. We 

conclude the paper in Sec. 4. 

2.  Naked Singularities in Four-Dimensional 

Spacetime 

 Before discussing the higher 

dimensional gravitational collapse of T-B-L 

spacetime, we briefly mention the nature of 

singularity arising in 4-dimensional spacetime. 

The Tolman-Bondi solution represents a 

spherically symmetric cloud of dust collapsing 

under the action of its own gravity. The metric is 

assumed to be diagonal and spherically 

symmetric. The line element in comoving 

coordinates  
( )φθ ,,, rt

  is given by [ 2-4 ]
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( ) ,sin
1

22222

2

22 φθθ ddRdr
f

R
dtds ++

+

′
+−=

 (1) 

where
f

is an arbitrary function of the comoving coordinate r  satisfying 
.1−>f ( )rtR ,

 is the 

physical radius at time t  of the shell labeled by r . Prime denotes partial derivative with respect to r . 

The energy momentum tensor for above metric is given by 

                                 
,

j
t

i
t

ij
T δδε=

    (2) 

where 
( )rF,ε

  is the energy density of the cloud.  The Einstein equations for this metric are   

                                      

( ) ,,
2

RR

F
rF

′

′
=ε

      (3)  

                              

,f
R

F
R +=&&

            (4) 

( we have set up 

1
8

4
=

c

Gπ

 ). 

F  is an arbitrary function of 
,r
 dot denotes partial derivative with respect to time t . Since we are 

concerned with collapse we assume 
0<R&
.)  

The Eq.(4) can be integrated to obtain R  as a function of 
rF     and
,  is given by the relation  

 

         

( )[ ]trfFR
0

23

2

3
=

 ,       (5) 

( )rf
0  is the constant of integration which we determined  by noting that there is a scaling freedom 

in the choice of r . 

It follows from Eq.(3) that the function 
( )rF

 becomes fixed once. The initial density distribution 

( ) ( )rr ρε =,0
 is given i.e.  

         
( ) ( ) drrrrF ∫= 2ρ

       (6) 

If the initial density 
( )rρ

 has a series of expansion [6] 

            

( ) ...
!3

1

!2

1 3

2

2

210
++++= rrrr ρρρρρ

       (7)  

near the center 
0=r
,  the resulting series expansion for the mass function 

( )rF
 is  

       
( ) ...

6

3

5

2

4

1

3

0
++++= rFrFrFrFrF

,        (8) 

where  

       
( )

...,3,2,1,0,
3!

=
+

= q
qq

F
q

q

ρ

  .           (9) 

As we are considering only those density functions which are decreasing away from center, first non-

vanishing derivative of density should be negative.  

From Eq.(5) we obtain  

       

( )
( )

,
3

2
23

rF

r
rt c =

                             (10) 

 



I J R B A T, Vol. II, Issue (7), Nov 2015: 185-195   ISSN 2347 – 517X 

 

187 

 

where  
( )rt c  is the time at which area radius of the shell r  become zero. 

From above equation we obtain  

  

,
3

2

0

0
F

t =

       (11) 

where 0
t

is the time at which central singularity forms. 

 

For the marginally bound ( i.e. 
0=f
) collapse it has been shown that [7] 

 i)    If  
,0

1
<ρ

the  singularity  is  naked  and  weak. 

 ii)   If 
0,0

21
<= ρρ

,  the  singularity  is  naked and weak. 

 iii)  If 
0,0,0

321
<== ρρρ

, the singularity is naked, if           

             
k5

0

3

4

3

ρ

ρ
ξ =

 is less than critical value 
9904.25−=cξ

and    

              covered cξξ > if 
. Further, the naked singularity is a strong     

        curvature singularity. 

 iv)  If 
,0

321
=== ρρρ

 the singularity is not naked i.e. the collapse ends  into a  

black hole.  

3.  Higher Dimensional Tolman-Bondi-Lemaitre Spacetime  

 The spherically symmetric inhomogeneous dust cloud in five-dimensional spacetime [8,9,10]  

is given by  

          
( ).sinsinsin

1

2
32

2

1

22
21

22
1

2

2

2

22

θθθθθθ dddR

dr
f

R
dtds

+++

+

′
+−=

         (12)   

    

where 
( )rf

 is arbitrary  function of comoving  coordinate 
,r
satisfying 

1−>f
 . 

( )rtR ,
 is the 

physical radius at time t  of the shell labeled  by r  in the sense that 
( )trR ,4

2π
 is the proper area of 

shell at time t .  
Let 

{ } }{ ,,,,,
321

θθθµ
rtx =

      
( )4,3,2,1,0=µ

. 

The non-vanishing metric components are 

               

,
1

,1
2

1100

R

f
gg

′

+
=−=

    

        

,
sin

1
,

1

1

22

33

2

22

θR
g

R
g ==

             (13) 

        

.
sinsin

1

2

2

1

22

44

θθR
g =

     
  

The non-vanishing christoffel symbols associated with metric (12) are  
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2
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Ricci tensors for the metric (12) are  
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0100
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−
= R
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R
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.
11

3

1
11

f

fR

fR

RRR

f

RR
R

+

′
−

+

′′
+

+

′′
=

&&&&

           (15) 

 

The energy momentum tensor is given by  

 

    
,

j
t

i
t

ij
T δδε=

                       (16) 

where 

         

( ) ,
2

3
,

3
RR

F
rF

′

′
=ε

            (17)  

 

we assume energy density 
( )rf ,ε

such that it is higher at the center and decreasing away from the 

center. The function 
( )trR ,

 is given by  

 

         

( ) ( ).
2

2
rf

R

rF
R +=&

             (18) 
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Since we are considering the collapsing model, it requires 
0<R&
.  

We use the rescaling freedom in r  to set   

    
( ) rrR =,0

,      (19) 

so that the physical area radius R  increases monotonically in r  and 
1=′R
. Also there will be no 

shell-crossing singularities on the initial surface. It has been shown in Ref.[2] that shell-crossing 

singularities are gravitationally weak, through which the spacetime may sometimes be extended. 

Hence we shall concentrate our attentions on only shell focusing singularities
( )0 i.e. =R

. 

 The central singularity at 
0=r
 , where density and curvature are infinite, is naked if there 

are outgoing non-space like geodesics which reach far away observer in the future and terminate at 

the singularity in the past. Integration of Eq.(18) yields the solution 

    

( ) ,

22








−
=−

F

Rf
G

F

R
rtt s

   (20) 

where 
( )yG

 is a strictly real positive and bounded function  given by 

 

    

( )

0,
2

1

0,
1

==

≠
+

=

y

y
y

y
yG

   (21) 

Using scaling freedom 
( ) ,,0 rrR =

Eq.(2.19)  gives 

 

( ) ,

22









=

F

fr
G

F

r
rt s

 
   

where 
( )rt s  gives the time at which the physical radius R  becomes zero , hence ranges for t  and 

r  are given by 

     
( ) ∞<≤≤<∞− rrtt s 0      and

.        (22) 

Since the shell-crossing singularities 
( )0,0.. >=′ RRei

 are gravitational weak [2] we consider 

only the shell focusing singularities 
( )0=R

. From Eqs.(16)-(21) , we can obtain 

 

 

( ) ( ) 















+
















−−Θ+−=′ − 21

2

221 1

22

1

X
PXPGXXrR β

η
βηα

      

       
( ),,

1
rXHr

−= α

                       (23) 

 

where we have used the following notations 

 

( ) ( ) ,,,,
F

fr
r

F

fr
r

u

R
Xru

′
=

′
=== βηα

 
  

  

( ) ,,,

22

F

uf
P

u

F

F

fr
rp ==Λ=

      (24) 
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( ) ( )
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1

2

2

1
,
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2
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







+




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

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X
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XRXH

β
η
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   (25) 

   

For marginally bound collapse 
( )0 i.e. =f

 ,  
( )rB

will be zero. 

 

 The parameter α  (which satisfies
1≥α
) is introduced here for examining the structure of 

the central singularity at 
0=r
. 

 

Kretschman scalar 
( )abcd

abcd RRK =
for the metric (12) is given by 

 

   

,
8

2

726

2

R

FC

RR

FFB

RR

FA
K +

′

′
+

′

′
=

   (26)  

 

where A,B and C are some constants. 

 

 It can be seen from above equation that the shell focusing  singularities occurring in T-B-L 

spacetime are also scalar polynomial singularity as Kretschman scalar also vanishes at 
0=R
. 

 

 To investigate the structure of the collapse we need to consider the radial null geodesics 

defined by 
0

2 =ds
 taking 

0== θφ &&
  into account. 

 

 In order to determine whether or not the singularity is naked, we investigate the future-

directed outgoing null geodesics emanating from the singularity. We want to determine if such a 

singularity is naked i.e. if there exists at least one future-directed radial null geodesics with past end 

point at the singularity.  

Equation for null geodesics are given by 

      

,
R

P

dk

dt
K

t ==
     (27) 

R

fK

dk

dr
K

t

r

′

+
==

1

 

        
RR

fP

′

+
=

1

,             (28) 

where the function 
( )rtP ,

 satisfies the equation 

   

0
1

22

2 =












 +
−−

′

′
+

R

f

R

R

RR

R
P

dk

dp &&

.     (29) 
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Let 
( )1≥= αα

ru
then   

 

   

.
1

1








+′=

−
dr

dt
RR

rdu

dR
&

αα
   (30) 

 

From Eq.(12) we can observe that for outgoing radial null geodesics 

 

   
f

R

dr

dt

+

′
=

1
.     (31) 

From Eq.(18) we have 

 

   

f
R

F
R +±=

2
&

,       (32) 

where the plus or minus sign corresponds to expansion or collapse respectively. If 
0<R&

then every 

dust shell implodes and inevitably collapses to vanishing proper area in a proper time. Since we are 

considering the collapsing case, we should consider negative sign. Hence we must have 

    

f
R

F
R +−=

2
&

.   (33) 

With the help of Eqs.(31) and (33) , we can write the Eq.(30) as 

 

    



















+

+

+
′

=
−

f

f
R

F

r

R

du

dR

1
1

2

1αα

  (34) 

                      

( )



















+

+
Λ

−=
f

f
XuXH

1
1

, 2

α

   (35) 

                  
( )uXU ,=

        (36) 

It is to be noted that 
( )uXH ,

 appeared in Eq.(35) is strictly positive and non-zero for all 
0>r
. 

3.1   Apparent Horizon 

 No study on gravitational collapse is complete without the discussion of apparent horizon. 

Spherical symmetry implies that the apparent horizon will only depend on the radial and time 

coordinates. Therefore, we begin by finding the differential equation governing the class of all radial 

null geodesics, which is done by putting 
0

2 === φθ ddds
. If the formation of the horizon 

precedes the formation of the central singularity then the singularity will be necessarily covered i.e. 

collapse will convert into black hole. On the other hand, if horizon formation occurs after the 

singularity formation, there may be future-directed non-spacelike geodesics that end in the past at 

the singularity. Then the final end state would be a naked singularity. 

 When a large amount of mass is contained in a small region of spacetime, a trapped surface 

forms around it. Therefore as the matter collapses under the influence of a gravitational force, there is 

a possibility that a trapped surface will form as the collapse proceeds. If this happens then on a 

sufficiently late time special surface, there will be a boundary that separates the trapped region from 

the normal region. This boundary is known as apparent horizon. 
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 If the null geodesic terminates in the past at the singularity with a definite tangent, then at 

the singularity, the tangent to the geodesic 
dudR

is positive and must have a finite value. From 

Eq.(34) it can be observed that 
dudR

 is positive if  

 

  

0
1

1
2

>
+

+

−
f

f
R

F

,          (37) 

i.e. if 

   

.1
2

f
R

F
f +>+

         (38) 

Since both sides are positive, we can write  

f
R

F
f +>+

2
1

, 

which in turns reduces to 
FR >2

. 

Thus the boundary of the trapped surface in the five-dimensional T-B-L spacetimes is given by  

    
FR =

.            (39) 

Using above value of 
,R
 Eq.(19) becomes  

   
( ) ( ) ( )fGFrtrt sah −=

,            (40) 

where 
( )rt ah denotes the time at which apparent horizon forms. 

 It can be easily seen from the above equation that all the points on the singularity curve
( ),rts

other than the central point 
( )0=r

 are covered by the apparent horizon. This is because, both the 

functions
( ) ( )rGrF   and

are strictly positive for 
( ),0>r

with 
( ) 0=rF

 at 0=r .Therefore for 

all  
0>r
,   

  
( ) ( )rtrt ahs >

 and  
( ) ( )00 ahs tt =

.   (41) 

  Above equation shows that non central singularities always form later than apparent 

horizon, hence they are covered and can not be naked. But at  
0=r
 , time of formation of 

singularity and apparent horizon is exactly same; hence there is chance to some radial null geodesic 

to escape from the singularity. Thus only central singularity could be naked while non central 

singularities are covered.  

  The singularity is naked if and only if there exist an outgoing null geodesic which 

emanates from the singularity.  

 

The radial null rays are given by  

   00

00

0
limlim

→→
→→

==

rr

RR
u

R

r

R
X

α

   (42) 

    0

0

lim

→

→

=

r

R

du

dR

.   (43) 
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The variable X  can be interpreted as the tangent to the outgoing geodesic, in 
uR,
 plane. It can be 

shown that if the equation 

 

( ) ( )

( )

0

1
1

0,

0,

0

02

2
0

=

−





















+

+
Λ

+=

−=

X
f

f
XXH

XXUXV

α

  (44) 

admits a real positive root, then the central singularity at with 
0 ,0 == Rr
 is naked. If the Eq.(44) 

does not have real and positive root , then collapse will convert into a black hole. 

3.2   Visible Singularity 

Consider 
( )rf

and  
( )rF

 as  

  
( ) ( )2

1

2

0
1 rfrfrf +=

,    (45) 

    
( ) 4

0
rFrF =

,     (46) 

  

1
0

0

0 −>= P
F

f

,     (47) 

where 00
, Ff

  and  1
f

  are constants.  

Therefore we can obtain  

( ) ( ) ( ) ,2,1,,2
2

100
=+=== αµηβ rfprpr
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00

0
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1

1
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p
f =Λ












−

+
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.  (48) 

 

     

( )
X

XXH 0
0,

Θ
+=

   ,    (49) 

Therefore Eq.(44) becomes  

 

  

( ) ,01
2

1 00 =−






 Θ
+







 Λ
−= X

X
X

X
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 (50) 

 

i.e. 

 

  
0

000

2

0

3 =Θ+Θ−+ FXXFX
 (51) 

 

Some numerical computations show that Eq.(2.51) has positive real root  

if  

   
2

5511

0

0
+−

<
Θ

F

 .    (52) 

Thus if the above equality is satisfied then the collapse could convert in to a naked singularity. 
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3.3   Strength of a Naked Singularity 

We now investigate the strength of a naked singularity. The main importance of determining the 

strength of a singularity is due to the fact that the CCH does not need to rule out the possibility of the 

occurrence of the weak naked singularity [11]. 

 A singularity is said to be strong if the collapsing objects do get crushed to a zero volume at 

the singularity and a weak one if they do not. 

According to Clarke and Krolak [12] criteria, the singularity is said to be strong in sense of Tipler [13] 

if at least along one radial null geodesic, we must have  

   
00

22
0limlim

→→
>=Ψ

kk

ba

ab KKRkk
,         (53) 

where 
a

K  is the tangent to the null geodesics and abR
 is the Ricci tensor. 

Thus 
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r
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where 

  R

P
K

t =
 ,      (55) 

  

tr
K

R

f
K

′

+
=

1

,     (56) 

 

where P  satisfies the differential  Eq.(29) 

  

 Using L-Hospital’s rule and Eqs.(4) to (10), (55) and (56) and the fact that at the singularity  

0
,0 XXr →→

, we have 

0

2
0lim

→

>
k

ba

ab KKRk

. 

Thus five-dimensional gravitational collapse satisfied the condition of Clarke and Krolak which shows 

that naked singularities arising in this gravitational collapse are gravitationally strong.  

4.   Conclusion 

 A naked singularity is a singularity 

which is visible to a far away observer, i.e. 

outgoing light rays starting from the singularity 

terminate on the singularity in the past. 

Tolman-Bondi spacetime has been extensively 

used to study the naked singularities [2-5]. We 

have extended this study to higher dimensional 

Tolman-Bondi metric and found that strong 

curvature naked singularities do arise in these 

spacetimes. 

 We have also shown that dimensionality 

of spacetime does not essentially change the 

basic nature of the singularity of an 

inhomogeneous dust collapse. In other word, we 

can argue that the naked singularities found in  

 

Tolman-Bondi dust collapse are stable with 

respect to perturbations in dimensions of the 

spacetime. Since we found naked singularities 

in higher-dimensional dust collapse, higher 

dimensional spacetimes violate the cosmic 

censorship conjecture. 
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