A Double-Blind Peer Reviewed & Refereed Journal

Original Article

INTERNATIONAL JOURNAL OF RESEARCHES IN BIOSCIENCES, AGRICULTURE AND TECHNOLOGY

© VMS RESEARCH FOUNDATION www.ijrbat.in

GROWTH PERFORMANCE OF PLANTED NATIVE SPECIES AT AFORESTATION SITE

Ratan Dhanorkar*, Nagesh Bodhe, Esarat Ansari, Prashant Wagh and Mrunal Kale

Botany Department, Anand Niketan College, Anandwan, Warora – 442914 Corresponding Email:- ratandhanokar07@gmail.com

Communicated :00.08.0000	Revision: 12.09.2022 & 17.09.2022	Published: 30.01.2023
Communicated :29.08.2022	Accepted: 02.10.2022	Published: 30.01.2023

ABSTRACT:

The present study represents the growth performance of planted native forest species in two plots of Modified Miyawaki Method of high density plantation obtained by rigorous field observations made throughout the year at Atal Anandwan High Density Plantation Site, Anandwan located in Chandrapur District of Maharashtra, India. Total 10480 native plants belonging to 71 different species were planted in 2.5 acres of land on 19 beds of 100 square meter area each from May to June, 2019. In the present study survival percentage and growth rate of 1,060 plants of 58 different species planted in two plots at the afforestation site were enumerated by recording the number of saplings established, shoot height and stem circumference at specific intervals. All the species planted at the afforestation exhibits 100 percent survival and follows the natural pattern in growth performance.

Keywords: - Afforestation, High Density Plantation, Survival rate, Growth rate, Anandwan.

INTRODUCTION:

Biodiversity is the variability among living organisms from all sources, including terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species, and of ecosystems". For our survival and existence nature has provide us variety of flora and fauna. Wild foods are an important source of food; in fact, before agriculture existed, the forest was completely fed with food and other sources. They ate a variety of foods such as tubers, roots, leaves, fruits, flowers, peanuts, vegetables, mushrooms, gums, etc. In India, forests plays vital role in the livelihoods of rural people. Agriculture is the most important activity, but forests provide various additional products for cash production and livelihood use. Forests are valued for various reasons and many efforts have been made to protect them. The reduction of forest cover is inevitable due to the

growth and development process, but traditionally many practices have been followed that have helped in the preservation of forests; some in their original form. Family gardens, forest gardens are examples of traditional forest conservation practices and greatly enhance the conservation of biodiversity.

'Anandwan', a 'Forest of happiness', located around 5 kilometers from Warora, a Tehsil place in Chandrapur district of Maharashtra, India, is an ashram and a community rehabilitation center which was mainly started for leprosy patients and the disabled from oppressed by sections of society. The project is run by the organization 'Maharogi Seva Samiti' and is spread over 50 Acres.

Concept of 'Atal Anandwan High Density Plantation' is inspired from the rapid and effective afforestation method developed by Akira Miyawaki, a Japanese botanist and expert in plant ecology and specializing seed biology study of natural forest. The Miyawaki method of

Page 1(

I J R B A T, Issue (XI) Vol (I) Jan 2023: 16-20

A Double-Blind Peer Reviewed & Refereed Journal

afforestation is the plantation of number of different species of plants close together in a small area. The close planting of random tree species together in a small area enriches the green cover and reinforces the richness of land. This will lead to coexistence of plant and matter of fact each plant drawn from the other vital nutrients and they grow to become strong and healthy plant. In this type of forestation technique the growth of plants is 10 times faster than natural plant growth. At Anandwan, Akira Miyawaki's High Density Plantation technique is adopted and recognized as 'Atal Anandwan Ghanwan Prakalpa'. It is planted in sector 14 of Anandwan (79.0273666; 20.281829). Major steps involved in afforestation using this technique are; Determination of soil texture and quantification of biomass, Selection of plant species, Design of forest and Preparation of area, Plantation. Look after the forest for three years. The present work aims to study Growth rate and

survival percentage of the planted plants in this technique.

METHODOLOGY:

Atal Anandwan High Density Plantation Project is established at sector 14 near the village, Majra (Rai) by Maharogi Sewa Samiti, Warora. Plantation drive was started in the month of May and took nearly one month for completion. Close planting of many random trees, sub-tree and shrub species in a small area creates mini dense forest within very short span of four-to five months. Nearly 10,480 plants belonging to 71 different native forest species are planted in 2.5 acres of land. High Density plantation is distributed over 19 plots measuring approximately 20 X 05 square feet in size.

For the present work, two plots (each measuring 20 X 05 square feet in size) designated as 'Plot M' and 'Plot N' were selected to explore. Plantation on these plots was conducted on 25th and 26th May, 2019.

For the present work, planted plants were first tagged with assigned numbers and identified for vernacular names. Field data such as number of planted plants, height of the plant, number of branches, circumference of the main stem, foliage status, flowering/fruiting season and morphological descriptions was collected at an interval of three months.

Observations collected from the sites were used for species identification, growth rate and survival percentage as follows;

- Species identification: From vernacular name and plant description using floras (Jungle Trees of Central India and Flora of Nagpur District and Internet
- Growth Rate and Survival Percentage was calculated from collected field data at an interval of three months using following formulae;
- Growth rate = $\frac{S2-S1}{T}$

Where, S1 = first measurement, S2 = second measurement, and T = the number of days between each

- Survival rate $\frac{TOTAL NO. OF PLANTS SURVIVED}{TOTAL NO. OF PLANTS ORIGINALLY PLANTED} \times 100$
- Growth rate of the plants produced in plot M' and plot N' at Atal Anandwan High Density plantation site during the session 2019-20 was calculated using collected field data

A Double-Blind Peer Reviewed & Refereed Journal

RESULTS AND DISCUSSION :

Growth performance and survival percentage of the plants planted in Atal Anandwan High Density plantation site during the session 2019-20.

Sr. No.	Family	Botanical Name	Local Name	Average Growth Rate (cm)	Survival Rate (%)
1	Anacardiaceae	Mangifera indica	Amba	0.355	100
2	Anacardiaceae	Semecarpus anacardium	Bibba	0.115	100
3	Anacardiaceae	Buchanania cochinchinensis	Charoli	0.27	100
4	Apocynaceae	Wrightia tinctoria	Kala Kuda	0.51	100
5	Apocynaceae	Carissa spinarum	Karwand	0.27	100
6	Bignoniaceae	Dolichandrone falcata	Medshing	0.935	100
7	Bignoniaceae	Oroxylem indicum	Tentu	0.655	100
8	Boraginaceae	Cordia dichotoma	Bhokar	0.65	100
9	Burseraceae	Commiphora wightii	Guggul	0.335	100
10	Caesalpinaceae	Cassia fistula	Bahawa	0.325	100
11	Combretaceae	Terminalia arjuna	Arjun	0.92	100
12	Combretaceae	Anogeissus latifolia	Dhawada	0.635	100
13	Combretaceae	Terminalia chebula	Hirda	0.16	100
14	Combretaceae	Terminalia elliptica	Yen	0.735	96.15
15	Combritaceae	Terminalia bellirica	Behada	0.17	100
16	Dipterocarpaceae	Shorea robusta	Sal	0.025	100
17	Ebenaceae	Diospyrus melanoxylon	Tendu	0.05	100
18	Euphorbiaceae	Mallotus philippensis	Sindoori	0.595	100
19	Fabaceae	Hardwickia binata	Anjan	0.54	100
20	Fabaceae	Bauhinia racemosa	Apta	0.535	100
21	Fabaceae	Pterocarpus marsupium	Bija	0.225	100
22	Fabaceae	Dalbergia lanceolaria	Dhoban	0.26	100
23	Fabaceae	Pongamia pinnata	Karanji	0.305	100
24	Fabaceae	Butea monosperma	Palas	0.04	100
25	Fabaceae	Pterocarpus santalinus	Raktachandan	0.03	100
26	Fabaceae	Dalbergia latifolia	Shisam	0.515	100
27	Fabaceae	Ougeinia oogeinensis	Tiwasa	0.9	97.62
28	Lamiaceae	Gmelina arborea	Shiwansag	1.23	100
29	Lecythidaceae	Careya arborea	Kumbha	0.11	100
30	Loganiaceae	Strychnos potatorum	Kuchla	0.025	100
31	Lythraceae	Woodfordia fruticosa	Dhayati	0.41	100
32	Lythraceae	Lagerstroemia speciosa	Jarul	1	100
33	Malvaceae	Sterculia urens	Karu	0.115	100
34	Malvaceae	Bombax ceiba	Katesawar	0.295	100
35	Meliaceae	Soymida febrifuga	Rohan	0.035	100

Page 🗕

I J R B A T, Issue (XI) Vol (I) Jan 2023: 16-20

A Double-Blind Peer Reviewed & Refereed Journal

Original Article

36	Mimosaceae	Acacia catechu	Khair	0.9	100
37	Mimosaceae	Albizia sp	Shirish	1.53	100
38	Moraceae	Ficus virens	Pakhad	0.595	100
39	Moraceae	Ficus religiosa	Pimpal	1.055	100
40	Moraceae	Ficus racemosa	Umbar	1.485	100
41	Moraceae	Ficus benghalensis	Wad	0.345	100
42	Moraceae	Ficus tinctoria	Gachch[0.055	100
43	Moringaceae	Moringa concanensis	Ranshewaga	1.555	85.35
44	Musaceae	Ensete superbum	Rankeli	1.145	100
45	Myrtaceae	Syzygium cumini	Jambhul	0.225	100
46	Oleaceae	Nyctanthus arbor-tristis	Parijatak	1.17	95.83
47	Phyllanthaceae	Emblica officinalis	Amla	0.425	100
48	Rubiaceae	Gardenia resinfera	Dikemali	0.165	100
49	Rubiaceae	Haldina cordifolia	Haldu	0.39	100
50	Rubiaceae	Mytragyna parviflora	Kadamba	0.9	100
51	Rubiaceae	Ixora pavetta	Lokhandi	0.01	100
52	Rutaceae	Aegle marmelos	Bel	0.23	100
53	Rutaceae	Limonia acidissima	Kawath	0.06	100
54	Sapindaceae	Schleichera oleosa	Kusum	0.48	100
55	Sapindaceae	Sapindus emarginatus	Ritha	0.31	100
56	Sapotaceae	Manilkara hexandra	Khirni	0.37	100
57	Sapotaceae	Madhuca longifolia	Moha	0.205	100
58	Ulmaceae	Holoptelea integrifolia	Chirol	0.705	100

Present study is to investigate the growth rate and survival percentage of planted native forest species in Atal Anandwan High Density Plantation site and we found positive results as follows; Together, plot 'M' and 'N' represents (58) different plant species belonging to 27 dicotyledonous and 01 monocotyledonous angiosperm families. In this study the maximum growth rate is shown by Moringa concanensis and Ixora pavetta, Shorea robusta and Strychnos potatorum shows minimum growth rate. Almost all planted native forest plant species showed 100% survival rate in representative plots at 'Atal Anandwan High Density Plantation' site.

REFERENCES:

D.C. DeLong, 1996. Defining Biodiversity. wildlife Society Bulletin, Wiley on behalf of the Wildlife Society, Vol. 24, No. 4.

- A. Miyawaki, 1993. Restoration of native forests from Japan to Malaysia. Tasks for Vegetation Science, 5-24.
- A. Miyawaki, 2014. The Japanese and Chinjuno-mori Tsunami-protecting forest after the Great East Japan Earthquake 2011. Phytocoenologia Vol. 44, Issue 3-4, 235– 244.
- A. Miyawaki, Restoration of urban green environments based on the theories of vegetation ecology, Ecological Engineering 11 1998, 157–165.
- P. Kishen, 2013. Jungle Trees of Central India. Penguin Books.
- N.R. Ugemuge, 1986. Flora of Nagpur District, Maharashtra, India. U. Rekha for Shree Prakashan.
- Ja nosIzsa k a., La szlo Papp b., 2000. A link between ecological diversity indices and

 $_{Page}1G$

A Double-Blind Peer Reviewed & Refereed Journal

measures of biodiversity. Ecological Modelling 130, 151–156.

X. F. Guo, Effects of Different Forest Reconstruction Methods on Charateristics of Understory Vegetation and Soil Quality, Applied Ecology and Envirounmental Research, 2018, 16(6):7501-7517.

 B. Schirone, A. Salis, F. Vessella, Effectiveness of the Miyawaki method in Mediterranean forest restoration programs, Landscape Ecological Engineering, 2011, 7:81-92

CCESS

OPEN

e-ISSN 2347 – 517X

Original Article

